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We provide a set of sufficient conditions for the consistency of any bootstrap procedure in
this problem.We compare the finite sample performance of different bootstrap procedures
through simulation studies. The results indicate that our proposed smoothed bootstrap
outperforms other bootstrap schemes, including the m-out-of-n bootstrap. Additionally,
we prove a convergence theorem for triangular arrays of random variables arising from
binary choice models, which may be of independent interest.
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1. Introduction

Consider a (latent-variable) binary response model of the form

Y = 1β⊤
0 X+U≥0,

where 1 is the indicator function, X is an Rd-valued continuous random vector of explanatory variables, U is an unobserved
random variable and β0 ∈ Rd is an unknown vector with |β0| = 1 (|·| denotes the Euclidean norm in Rd). The parameter
of interest is β0. If the conditional distribution of U given X is known up to a finite set of parameters, maximum likelihood
techniques can be used for estimation, among other methods; see, e.g., McFadden (1974). The parametric assumption on U
may be relaxed in several ways. For instance, ifU and X are independent or if the distribution ofU depends on X only through
the indexβ⊤

0 X , the semiparametric estimators of Han (1987), Horowitz andHärdle (1996), Powell et al. (1989) and Sherman
(1993) can be used; also see Cosslett (1983). The maximum score estimator considered by Manski (1975) permits the
distribution of U to depend on X in an unknown and very general way (heteroscedasticity of unknown form). The model
replaced parametric assumptions on the error disturbance U with a conditional median restriction, i.e., med (U |X) = 0,
where med (U |X) represents the conditional median of U given X . Given n observations (X1, Y1), . . . , (Xn, Yn) from such a
model, Manski (1975) defined amaximum score estimator as any maximizer of the objective function

n∑
i=1

(
Yi −

1
2

)
1β⊤Xi≥0

over the unit sphere in Rd.
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The asymptotics for the maximum score estimator are well-known. Under some regularity conditions, the estimator was
shown to be strongly consistent in Manski (1985) and its asymptotic distribution was derived in Kim and Pollard (1990)
(also see Cavanagh (1987)). Even though themaximum score estimator is themost general estimator available for the binary
response model considered here, the complicated nature of its limit law (which depends, among other parameters, on the
conditional distribution of U given X for values of X on the hyperplane {x ∈ Rd

: β⊤

0 x = 0}) and the fact that it exhibits
nonstandard asymptotics (cube-root rate of convergence) have made it difficult to do inference for the estimator under
complete generality.

As an alternative, Horowitz (1992) proposed the smoothed maximum score estimator. Although this estimator is
asymptotically normally distributed under certain assumptions (after proper centering and scaling) and the classical
bootstrap can be used for inference (see Horowitz (2002); also see de Jong andWoutersen (2011) for extensions to certain
dependence structures), it has a number of drawbacks: it requires stronger assumptions on the model for the asymptotic
results to hold, the smoothing of the score function induces bias which can be problematic to deal with, and the plug-in
methods (see Horowitz (1992, 2002)) used to correct for this bias are not effective when the model is heteroscedastic or
multimodal (see Kotlyarova and Zinde-Walsh (2009)).

This motivates us to study the maximum score estimator and investigate the performance of bootstrap — a natural
alternative for inference in such nonstandard problems. Bootstrap methods avoid the problem of estimating nuisance
parameters and are generally reliable in problems with n−1/2 convergence rate and Gaussian limiting distributions;
see Bickel and Freedman (1981), Singh (1981), Shao and Tu (1995) and its references. Unfortunately, the classical bootstrap
(drawing n observations with replacement from the original data) is inconsistent for the maximum score estimator as
shown in Abrevaya and Huang (2005). In fact, the classical bootstrap can behave quite erratically in cube-root convergence
problems. For instance, it was shown in Sen et al. (2010) that for the Grenander estimator (the nonparametric maximum
likelihood estimator of a non-increasing density on [0, ∞)), a prototypical example of cube-root asymptotics, the bootstrap
estimator is not only inconsistent but has noweak limit in probability. This stronger result should also hold for themaximum
score estimator. These findings contradict some of the results of Abrevaya and Huang (2005) (especially Theorem 4 and the
conclusions of Section 4 of that paper) where it is claimed that for some single-parameter estimators a simple method for
inference based on the classical bootstrap can be developed in spite of its inconsistency.

Thus, in order to apply the bootstrap to this problem some modifications of the classical approach are required.
Two variants of the classical bootstrap that can be applied in this situation are the so-called m-out-of-n bootstrap and
subsampling. The performance of subsampling for inference on the maximum score estimator has been studied in Delgado
et al. (2001). The consistency of the m-out-of-n bootstrap can be deduced from the results in Lee and Pun (2006). Despite
their simplicity, the reliability of both methods depends crucially on the size of the subsample (the m in the m-out-of-n
bootstrap and the block size in subsampling) and a proper choice of this tuning parameter is difficult; see Section 4 of Lee
and Pun (2006) for a brief discussion on this. Thus, it would be desirable to have other alternatives –more automated and
consistent bootstrap procedures –for inference in the general setting of the binary choice model of Manski.

In this paper we propose a model-based smoothed bootstrap procedure (i.e., a method that uses the model setup and
assumptions explicitly to construct the bootstrap scheme; see Section 3.1 for the details) that provides an alternative to
subsampling and them-out-of-n bootstrap. We prove that the procedure is consistent for the maximum score estimator. In
doing so, we state and prove a general convergence theorem for triangular arrays of random variables coming from binary
choice models that can be used to verify the consistency of any bootstrap scheme in this setup. We derive our results in
greater generality1 than most authors by assuming that β0 belongs to the unit sphere in Rd as opposed to fixing its first
coordinate to be 1 (as in Abrevaya and Huang (2005)). To make the final results more accessible we express them in terms
of integrals with respect to the Lebesgue measure as opposed to surface measures, as in Kim and Pollard (1990). We run
simulation experiments to compare the finite sample performance of different bootstrap procedures. Our results indicate
that the proposed smoothed bootstrap method (see Section 3.1) outperforms all the others. Even though the proposed
bootstrap scheme involves the choice of tuning parameters, they are easy to tune —smoothing bandwidths that fit the data
well are to be preferred.

To the best of our knowledge, this paper is the first attempt to understand the behavior of model-based bootstrap
procedures under the very general heteroscedasticity assumptions for themaximumscore estimator. Since the submission of
this manuscript there has been at least two papers that propose alternate consistent bootstrap procedures for themaximum
score estimator: Hong and Li (2015) develop a new type of resampling scheme called the numerical bootstrap and show that
it provides valid inference, while Cattaneo et al. (2017) develop a bootstrap-based procedure that provides valid inference
by analytically modifying the criterion function for the maximum score estimator.

Our exposition is organized as follows: In Section 2we introduce themodel and our assumptions. In Section 3we propose
the smoothed bootstrap procedure for themaximum score estimator and discuss its consistency.We study and compare the
finite sample performance of the different bootstrap schemes in Section 4 through simulation experiments. In Section 5
we state a general convergence theorem for triangular arrays of random variables coming from binary choice models (see
Theorem 5.1) which is useful in proving the consistency of our proposed bootstrap scheme (given in Section 6). Section 7
gives the proofs of the results in Section 5. Appendix A contains some auxiliary results and some technical details omitted
from the main text. In Appendix B we provide a necessary and sufficient condition for the existence of the latent variable
structure in a binary choice model, that may be of independent interest.

1 We do not need to assume that the coefficient corresponding to a particular covariate is non-zero.
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2. The model

We start by introducing some notation. For a signed Borel measure µ on some metric space X and a Borel measurable
function f : X → R which is either integrable or nonnegative we will use the notation µ(f ) :=

∫
fdµ. If G is a class of such

functions on X we write ∥µ∥G := sup{|µ(f )| : f ∈ G}. We will also make use of the sup-norm notation, i.e., for functions
g : X → Rd, G : X → Rd×d we write ∥g∥X := sup{|g(x)| : x ∈ X} and ∥G∥X := sup{∥G(x)∥2 : x ∈ X}, where |·| stands for the
usual Euclidean norm and ∥ · ∥2 denotes the matrix L2-norm on the space Rd×d of all d× d real matrices (see Meyer (2001),
page 281). For a differentiable function f : Rd

→ Rwewrite∇f (x) := ∂ f /∂x for its gradient at x.Wewill regard the elements
of Euclidean spaces as column vectors. For two real numbers a and b, we write a ∧ b := min(a, b) and a ∨ b := max(a, b).

Consider a Borel probability measure P̃ on Rd+1, d ≥ 2, such that if (X,U) ∼ P̃ then X takes values in a closed, convex
region X ⊂ Rd with X◦

̸= ∅ (here X◦ denotes the interior of the set X) and U is a real-valued random variable that satisfies
med (U |X) = 0 almost surely (a.s.), wheremed (·) represents the median. We only observe (X, Y ) ∼ Pwhere

Y := 1β⊤
0 X+U≥0 (1)

for some β0 ∈ Sd−1 (Sd−1 is the unit sphere inRd with respect to the Euclidean norm). Throughout the paper we assume the
following conditions on the distribution P:

(C1) X is a convex and compact subset of Rd.
(C2) Under P, X has a continuous distribution with a strictly positive density p onX. We also assume that p is continuously

differentiable onX◦ and ∇p is integrable (with respect to the Lebesguemeasure) overX. Let F denote the distribution
of X under P, i.e., F (A) := P (X ∈ A), for A ⊂ Rd Borel.

(C3) Define

κ(x) := P (Y = 1|X = x) = P̃
(
β⊤

0 X + U ≥ 0|X = x
)
. (2)

We assume that κ is continuously differentiable on X◦, the set {x ∈ X◦
: ∇κ(x)⊤β0 > 0} intersects the hyperplane

{x ∈ Rd
: β⊤

0 x = 0}, and that
∫
|∇κ(x)|xx⊤p(x)dx is well-defined.

Given observations (X1, Y1), . . . , (Xn, Yn) from such amodel, we wish to estimate β0 ∈ Sd−1. A maximum score estimator
of β0 is any element β̂n ∈ Sd−1 that satisfies:

β̂n := argmax
β∈Sd−1

{
1
n

n∑
i=1

(
Yi −

1
2

)
1β⊤Xi≥0

}
. (3)

Note that there may be many elements of Sd−1 that satisfy (3). We will focus on measurable selections of maximum score
estimators, i.e., we will assume that we can compute the estimator in such a way that β̂n is measurable (this is justified in
view of themeasurable selection theorem, see Chapter 8 of Aubin and Frankowska (2009)).Wemake this assumption to avoid
the use of outer probabilities.

Our assumptions (C1)–(C2) on P and the continuous differentiability of κ imply that Γ (β), defined as

Γ (β) := P
[(

Y −
1
2

)
1β⊤X≥0

]
(4)

is twice continuously differentiable in a neighborhood of β0 (see Lemma A.1). Moreover, assumption (C3) implies that the
Hessian matrix ∇

2Γ (β0) is non-positive definite on an open neighborhood U ⊂ Rd of β0; see Lemma A.1. Our regularity
conditions (C1)–(C3) are equivalent to those in Example 6.4 of KimandPollard (1990)2 and are stronger than those in Manski
(1985). Hence, a consequence of Lemmas 2 and 3 in Manski (1985) is that β0 is identifiable and is the unique maximizer
of the process Γ (β) where β ∈ Sd−1. Similarly, Theorem 1 in the same paper implies that if (β̂n)∞n=1 is any sequence of
maximum score estimators, we have β̂n

a.s.
−→ β0.

3. Bootstrap and consistency

3.1. Smoothed bootstrap

In this sub-section we propose a smoothed bootstrap procedure for constructing confidence regions for β0. Observe that
Y given X = x follows a Bernoulli distribution with probability of ‘‘success’’ κ(x), i.e., Y |X = x ∼ Bernoulli(κ(x)), where κ

is defined in (2). Our bootstrap procedure is model-based and it exploits the above relationship between Y and X using a
nonparametric estimator of κ . The smoothed bootstrap procedure can be described as follows:

2 For assumption (C1) see the paragraph after the fifth display in page 214 of Kim and Pollard (1990); for assumption (C2) see the last paragraph of page
213 and for assumption (C3) see the second and third display of page 215.



R.K. Patra et al. / Journal of Econometrics 205 (2018) 488–507 491

(i) Choose an appropriate nonparametric smoothing procedure (e.g., kernel density estimation) to construct a density
estimator p̂n of p using X1, . . . , Xn.

(ii) Use (X1, Y1, ), . . . , (Yn, Xn) to find a smooth estimator κ̂n of κ (e.g., using kernel regression).
(iii) Sample (X∗

n,1, Y
∗

n,1), . . . , (X
∗
n,n, Y

∗
n,n) independently from Q̂n (conditional on the data), where (X, Y ) ∼ Q̂n if and only if

X ∼ p̂n and Y |X = x ∼ Bernoulli(κ̂n(x)).
(iv) Let β̂∗

n be any maximizer of

S∗

n (β) :=
1
n

n∑
i=1

(
Y ∗

n,i −
1
2

)
1β⊤X∗

n,i≥0.

(v) Compute

β̃n = argmax
β∈Sd−1

∫
β⊤x≥0

{
κ̂n(x) −

1
2

}
p̂n(x)dx. (5)

Let Gn be the distribution of the (normalized and centered) maximum score estimator, i.e.,

∆n := n1/3(β̂n − β0) ∼ Gn. (6)

Kim and Pollard (1990) showed that, under conditions (C1)–(C3),∆n converges in distribution. LetG denote the distribution
of this limit. Thus,

ρ(Gn,G) → 0,

where ρ is the Prokhorov metric or any other metric metrizing weak convergence of probability measures. Moreover, let Ĝn
be the conditional distribution of

∆∗

n := n1/3(β̂∗

n − β̃n) (7)

given the data, i.e., for any Borel set A ⊂ Rd, Ĝn(A) = P
(
∆∗

n ∈ A
⏐⏐σ ((Xn, Yn)

∞

n=1

))
. We will approximate Gn by Ĝn, and use

this to build confidence sets for β0. In Section 3.2, we will show that the smoothed bootstrap scheme is weakly consistent,
i.e.,

ρ(Gn, Ĝn)
P

−→ 0. (8)

It was shown in Abrevaya and Huang (2005) that the bootstrap procedure based on sampling with replacement from the
data (X1, Y1), . . . , (Xn, Yn) (the classical bootstrap) is inconsistent.

Steps (i)–(v) deserve comments. We start with (i). It will be seen in Theorem 5.1 that the asymptotic distribution of ∆n
depends on the behavior of F , the distribution of X under P, around the hyperplane H := {x ∈ Rd

: β⊤

0 x = 0}. As the
empirical distribution is discrete, a smooth approximation to F might yield a better finite sample approximation to the local
behavior aroundH. Indeed our simulation studies clearly illustrate this point (see Section 4). We can use any nonparametric
density estimation method to estimate p. In our simulation studies, we use the ‘‘product kernel function’’ constructed from
a product of d univariate kernel functions and estimate p by

p̂n(x) =
1

nhn,1 · · · hn,d

n∑
i=1

K
(
x − Xi

hn

)
, for x ∈ Rd, (9)

where hn = (hn,1, . . . , hn,d), K
(

x−Xi
hn

)
:= k

(
x1−Xi,1
hn,1

)
×· · ·×k

(
xd−Xi,d
hn,d

)
, and k(·) is a univariate (possibly higher order) kernel

function; see Einmahl and Mason (2005) and the references therein for the consistency of kernel-type function estimators.
As noted after (2), κ plays a central role in determining the joint distribution of (X, Y ) and in the absence of any prior

knowledge on the conditional distribution function of Y given X we can estimate it nonparametrically using the Nadaraya–
Watson estimator

κ̂n(x) =

∑n
i=1 YiK ((x − Xi)/hn)∑n
i=1 K ((x − Xi)/hn)

, (10)

where hn ∈ Rd is the bandwidth vector and K : Rd
→ R is the product kernel. A huge literature has been developed on the

consistency of the Nadaraya–Watson estimator; see e.g., Li and Racine (2011) and the references therein.
In (iii), we generate the bootstrap sample from the estimated joint distribution of (X, Y ). Note that our approach is

completely nonparametric and allows us to model any kind of dependence between X and Y . The maximum score estimator
from the bootstrap sample is computed in (iv).

Our bootstrap procedure does not necessarily reflect the latent variable structure in (1); see Appendix B for a detailed
discussion of this and a lemma discussing a necessary and sufficient condition for the existence of the latent variable
structure. Therefore, β̂n is not guaranteed to be the maximum score estimator for the sampling distribution at the bootstrap
stage. For the bootstrap scheme to be consistent we need to change the centering of our bootstrap estimator from β̂n to β̃n,
the maximum score estimator obtained from the smoothed joint distribution of (X, Y ). This is done in (v).
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Remark 3.1. In the above smoothed bootstrap schemewe generate i.i.d. samples from the joint distribution of (X, Y ) by first
drawingX from itsmarginal distribution and then generating Y from the conditional distribution of Y |X . A natural alternative
is to draw Y ∼ Bernoulli(π ) first ( where π := P(Y = 1)) and then to generate X from the conditional distribution of X |Y . In
this approach, we need to estimate the conditional density of X given Y = 0 (fX |Y=0) and Y = 1 (fX |Y=1) and π . Note that κ

and the conditional densities are related as

κ(x) =
π fX |Y=1(x)

(1 − π )fX |Y=0(x) + π fX |Y=1(x)
. (11)

A natural estimator of π , π̂n, can be the relative frequency of Y = 1 in the observed data. Further, fX |Y=0 and fX |Y=1 can be
estimated using standard kernel density estimation procedures after partitioning the data based on the values of Y .

Remark 3.2. Note that κ̂n in the smoothed bootstrap procedure, as described in Section 3.1, does not necessarily satisfy the
inequality (β̂⊤

n x)(κ̂n(x) − 1/2) ≥ 0 for all x ∈ X. Thus the smoothed bootstrap procedure does not strictly mimic the latent
variable structure in the model. However, it must be noted that the referred inequality will be satisfied asymptotically for
all x outside the hyperplane

{
x ∈ Rd

: β⊤

0 x = 0
}
whenever β̂n and κ̂n are consistent.

3.2. Consistency of smoothed bootstrap

In this sub-section we study the consistency of the smoothed bootstrap procedure proposed in the previous sub-section.
The classical bootstrap scheme is known to be inconsistent for the maximum score estimator; see Abrevaya and Huang
(2005). The consistency of subsampling and the m-out-of-n bootstrap in this problem can be deduced from the results
in Delgado et al. (2001) and Lee and Pun (2006), respectively. However, finite sample performance of both subsampling and
the m-out-of-n bootstrap depend crucially on the choice of the block size (m), and the choice of a proper m is very difficult.
Moreover, different choices of m lead to very different results. In contrast, the tuning parameters involved in the model
based smoothed bootstrap procedure can be easily calibrated — smoothing bandwidths that fit the given data well are to be
preferred.

We recall the notation and definitions established in Section 2. We will denote by Z = σ
(
(Xn, Yn)

∞

n=1

)
the σ -algebra

generated by the sequence (Xn, Yn)
∞

n=1 with (Xn, Yn)
∞

n=1
i.i.d.
∼ P. Let Q̂n be the probability measure on Rd+1 such that

(X, Y ) ∼ Q̂n if and only if

X ∼ p̂n and Y |X = x ∼ Bernoulli(κ̂n(x)),

where p̂n and κ̂n are estimators of p and κ respectively, and may be defined as in (9) and (10). We can regard the bootstrap
samples as (X∗

n,1, Y
∗

n,1), . . . , (X
∗
n,n, Y

∗
n,n)

i.i.d.
∼ Q̂n.

Recall that Gn denotes the distribution of n1/3(β̂n − β0) and ρ(Gn,G) → 0. Moreover, Ĝn denotes the conditional
distribution of n1/3(β̂∗

n − β̃n), given the data, where β̃n is defined in (5). Thus, a necessary and sufficient condition for the
smoothed bootstrap procedure to be weakly consistent is

ρ(Ĝn,G)
P

−→ 0. (12)

In the following theorem, we give sufficient conditions for the smoothed bootstrap procedure proposed to be consistent.

Theorem 3.1 (Main Theorem). Consider the smoothed bootstrap scheme described in Section 3.1 and assume that assumptions
(C1)–(C3) hold. Furthermore, assume that the following conditions hold:

(S1) The sequence (p̂n)∞n=1 of densities is such that p̂n is continuously differentiable on X◦, ∇p̂n is integrable (with respect to the
Lebesgue measure) over X, and ∥p̂n − p∥X = oP(n−1/3).

(S2) κ̂n converges to κ uniformly on compact subsets of X◦ w.p. 1.
(S3) For any compact set X ⊂ X◦, ∥∇κ̂n − ∇κ∥X → 0 a.s. and ∥∇κ̂n − ∇κ∥X = OP(1).

Then, the smoothed bootstrap procedure is weakly consistent, i.e., the conditional distribution of ∆∗
n, given (X1, Y1), . . . ,

(Xn, Yn), converges to G in probability (see (8)).

Remark 3.3. A similar result could have been obtained under the parametrization considered in Horowitz (1992)
and Abrevaya and Huang (2005).

The proof of Theorem 3.1 is involved and is given in Section 6. The proof uses results from Section 5 where we give a
convergence theorem for the maximum score estimator for triangular arrays of random variables arising from the binary
choice model.

Conditions (S1)–(S3) deserve comments. In the following we discuss the existence of p̂n and κ̂n satisfying conditions
(S1)–(S3). If we use kernel density estimation techniques to construct p̂n, then Theorem 1 and Corollary 1 of Einmahl and
Mason (2005) give very general conditions on the uniform in bandwidth consistency of kernel-type function estimators. In
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particular, they imply that (S1) holds if p is sufficiently smooth and we use sufficiently higher order kernel; see Theorem
6 of Hansen (2008).3 According to Stone (1982) the optimal and achievable rate of convergence for estimating p
nonparametrically is n−

r
2r+d if p is r times continuously differentiable overX. For the Nadaraya–Watson estimator Theorem2

and Corollary 2 of Einmahl andMason (2005) gives numerous results on the uniform convergence of κ̂n which, in particular,
shows that (S2) holds. The first condition in (S3) on the uniform convergence on compacts (in the interior of the support of
X) of ∇κ̂n holds for the Nadaraya–Watson estimator defined in (10); see Blondin (2007). The second condition in (S3) can
also be shown to hold under appropriate conditions on the smoothing bandwidth and the kernel if p is strictly positive on
X,4 e.g., the Nadaraya–Watson estimator for κ based on Epanechnikov kernel would satisfy (S3); see Hansen (2008). Note
that conditions (S1)–(S3) are stronger than those assumed in Kim and Pollard (1990) and Abrevaya and Huang (2005).

Remark 3.4. Recall the alternative data generating mechanism described in Remark 3.1. Let κ̂n now be the estimator based
on (11), where we use plug-in kernel density estimators of fX |Y=0 and fX |Y=1, and estimate π by the sample mean of Y . Then,
Theorem 1 and Corollary 1 of Einmahl and Mason (2005) (note that p(x) is bounded away from zero on X) can be used
to show that p̂n and κ̂n satisfy conditions (S1)–(S3). Hence, by Theorem 3.1, this smoothed bootstrap approach can also be
shown to be consistent.

4. Simulation experiments

In this section we illustrate the finite sample performance of our proposed smoothed bootstrap, the classical bootstrap,
and the m-out-of-n bootstrap through simulation experiments. Let {(X∗

1 , Y ∗

1 ), . . . , (X
∗
m, Y ∗

m)} be m samples drawn randomly
with replacement from {(X1, Y1), . . . , (Xn, Yn)}. The m-out-of-n bootstrap estimates Gn (see (6)) by the distribution of
m1/3(β̌m − β̂n), where

β̌m := argmax
β∈Sd−1

{
1
m

m∑
i=1

(
Y ∗

i −
1
2

)
1β⊤X∗

i ≥0

}
.

Lee and Pun (2006) prove that such a bootstrap procedure is weakly consistent for the binary responsemodel considered in
this paper if m = o(n) and m → ∞, as n → ∞. However finite sample performance of m-out-of-n bootstrap relies heavily
on the choice ofm, and a proper choice is difficult. Also, most data driven choices form are computationally very expensive.
For a comprehensive overview of m-out-of-n bootstrap methods and discussion on the choice of m see Bickel et al. (1997)
and Bickel and Sakov (2008).

For our first simulation scenario, we take (X,U) ∼ P̃, where P̃ is a distribution on Rd+1 and fix β0 =
1

√
d
(1, . . . , 1)⊤. For

P̃ to satisfy our model assumptions, we let

U |X ∼ N
(
0,

1
(1 + |X |

2)2

)
, X ∼ Uniform([−1, 1]d), and Y = 1β⊤

0 X+U≥0. (13)

Thus, in this case κ(x) = 1−Φ(−β⊤

0 x(1+|x|2)), which is, of course, infinitely differentiable. Consequently, according to Stone
(1982), the optimal (achievable) rates of convergence to estimate κ nonparametrically are faster than those required in (ii)
of Theorem 3.1. To compute the estimator κ̂n of κ we have chosen to use the Nadaraya–Watson estimator with a standard
Epanechnikov kernel and a bandwidth chosen by least squares cross validation; see Li and Racine (2004).We compute p̂n via
the d-dimensional higher order Gaussian product kernel5 (of order ≥ d+ 1) centered at X1, . . . , Xn with bandwidth chosen
by Scott’s normal reference rule for kernel density estimation (see Scott (1992), page 152). Since p̂n is not guaranteed to
be nonnegative, we use the normalized version of max{p̂n, 0} to estimate p and henceforth call this modified kernel-based
estimator p̂n. As the (d+1)’th derivative of p (the d-dimensional product uniform density) is uniformly continuous, Theorem
6 of Hansen (2008) shows that the kernel density estimate with a product kernel of order at least d + 1 satisfies (S1).
To sample from p̂n we use an acceptance–rejection sampling method, where the proposal density is the kernel density
estimate that uses X1, . . . , Xn and the d-dimensional standard Gaussian (second order) product kernel with bandwidth
chosen by Scott’s normal reference rule. Note that as both the proposal density and p̂n converge to the same quantity, the
large sample efficiency of our acceptance acceptance–rejection algorithm is close to 1.Moreover, sampling from the proposal
density is equivalent to sampling randomlywith replacement from X1, . . . , Xn and then adding a d-dimensional independent
mean zero Gaussian random variable with a diagonal variance–covariance matrix D, where diag(D) = (h2

n1, . . . , h
2
nd) and

(hn1, . . . , hnd) is the bandwidth vector given by Scott’s normal reference rule. We would like to point out that our selection
of the smoothing parameters are not optimal in any sense and could be improved upon by applying data-driven selection
methods, such as cross-validation (e.g., see Chapter 1 of Li and Racine (2011)).

We next provide graphical evidence that illustrates the (non)-convergence of the different bootstrap schemes. We take
n = 2000 and d = 2 to construct histograms for the bootstrap approximation to the distribution of n1/3(β̂n,1 − β0,1),

3 Under appropriate smoothness conditions on the density p the kernel density estimate with a kernel function of order at least d + 1 satisfies (S1).
4 By assumption (C2) p is continuous. Thus a strictly positive p is bounded away from 0 on its (compact) support.
5 See Page 35 of Li and Racine (2004) for definition of higher order Gaussian and Epanechnikov kernels.
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Fig. 1. Histogram of the distribution of ∆∗

n,1 (i.e., the first coordinate of ∆∗
n; see (7)), conditional on the data, for four different bootstrap schemes. The

density of n1/3(β̂n,1 − β0,1) and its asymptotic limit are also plotted. The density of the asymptotic limit and the histograms are overlaid with the density
of n1/3(β̂n,1 − β0,1) (in dashed red). Here bn denotes the bootstrap sample size for the two differentm-out-of-n bootstrap schemes.

obtained from 1000 bootstrap samples for 4 different bootstrap schemes: the classical bootstrap, the smoothed bootstrap,
andm-out-of-n bootstrap with bootstrap sample size bn = ⌈

√
n⌉, ⌈n4/5

⌉. In addition to all this, we give the histograms of the
actual distribution of n1/3(β̂n,1 −β0,1) and its asymptotic limit. For P̃ described above, the asymptotic distribution of the first
component of n1/3(β̂n − β0) is that of 1

√
2
argmaxs∈RΛ(s) with Λ(s) := 2−5/4Z(s) −

11
30

√
π
s2, where Z is a standard two-sided

Brownian motion starting at 0. The resulting histograms are displayed in Fig. 1.
It is clear from Fig. 1 that the histogram obtained from the smoothed bootstrap (top-right) is the one that best

approximates the actual distribution of n1/3(β̂n,1 −β0,1) (top-center) and its asymptotic limit (top-left). Fig. 1 also illustrates
the lack of convergence of the classical bootstrap as its histogram (bottom-right) is quite different from the ones in the
top row. Although known to converge, the m-out-of-n bootstrap schemes (bottom-left and bottom-center) give visibly
asymmetric histograms with larger range, resulting in wider and more conservative confidence intervals.

We now study the performance of each of the bootstrap schemes by measuring the average length and coverage
probability of the confidence intervals built from several random samples obtained from P̃ for different choices of d.
For d = 2, we simulate 1000 replicates of sample sizes n = 100, 200, 500, 1000, 2000 and 5000. For each of these
samples 5 different confidence intervals are built using the classical and smoothed bootstrap schemes discussed above
and the m-out-of-n bootstrap with bn = {⌈n1/2

⌉, ⌈n2/3
⌉, ⌈n4/5

⌉}. Each confidence interval is built using 500 bootstrap
replicates. In addition to considering P̃ as the one used above, we conduct the same experiments with the following setting:
U |X ∼ (1 + |X |

2)−1Ξ , Ξ ∼ Student(3), X ∼ Uniform([−1, 1]2), β0 = 2−1/2(1, 1)⊤ and Y = 1β⊤
0 X+U≥0, where Student(3)

stands for a standard Student-t distribution with 3 degrees of freedom. The results for the Gaussian and Student-t error
settings are reported in Table 1.

Table 1 indicates that the smoothed bootstrap scheme outperforms all the others as it achieves the best combination of
high coverage and small average length. Its average length is, overall, considerably smaller than those of the other consistent
procedures. Needless to say, the classical bootstrap performs poorly compared to the others.

To study the effect of dimension on the performance of the 5 different bootstrap schemes, we fix n = 10000 and sample
from P̃ for d = 3, 4, 5, and 6. For each d, we consider 500 samples and for each sample we simulate 500 bootstrap replicates
to construct the confidence intervals. The results are summarized in Table 2. An obvious conclusion of our simulation study
is that the smoothed bootstrap is the best choice. For the smoothed bootstrap scheme in Tables 1 and 2, we use a Gaussian
product kernel of order at least d + 1 with bandwidths chosen by Scott’s reference rule to estimate p and the second-order
Epanechnikov product kernel with bandwidth chosen by least squares cross-validation to estimate κ. The estimation and
sampling procedure for the smoothed bootstrap scheme is described in more detail at the beginning of Section 4 of the
paper.
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Table 1
The estimated coverage probabilities and average lengths of nominal 95% confidence intervals for the first coordinate of β0 obtained using the 5 different
bootstrap schemes for each of the two models.

U |X ∼ N(0, (1 + |X |
2)−2), X ∼ Uniform([−1, 1]2), β0 = 2−1/2(1, 1)⊤

n = 100 n = 200 n = 500

Coverage Avg Length Coverage Avg Length Coverage Avg Length

Smoothed 0.83 0.80 0.92 0.62 0.96 0.43
Classical 0.72 0.60 0.81 0.48 0.85 0.34
⌈n1/2

⌉ 0.69 0.63 0.76 0.50 0.85 0.38
⌈n2/3

⌉ 0.71 0.62 0.81 0.50 0.90 0.39
⌈n4/5

⌉ 0.73 0.63 0.83 0.51 0.91 0.38

n = 1000 n = 2000 n = 5000

Coverage Avg Length Coverage Avg Length Coverage Avg Length

Smoothed 0.97 0.32 0.97 0.24 0.98 0.16
Classical 0.86 0.25 0.87 0.19 0.92 0.13
⌈n1/2

⌉ 0.88 0.30 0.93 0.24 0.98 0.18
⌈n2/3

⌉ 0.93 0.31 0.96 0.24 0.98 0.17
⌈n4/5

⌉ 0.92 0.29 0.93 0.22 0.97 0.15

U |X ∼ (1 + |X |
2)−1Ξ , Ξ ∼ Student(3), X ∼ Uniform([−1, 1]2), β0 = 2−1/2(1, 1)⊤

n = 100 n = 200 n = 500

Coverage Avg Length Coverage Avg Length Coverage Avg Length

Smoothed 0.79 0.87 0.89 0.69 0.96 0.47
Classical 0.70 0.67 0.78 0.53 0.87 0.36
⌈n1/2

⌉ 0.67 0.71 0.75 0.56 0.81 0.42
⌈n2/3

⌉ 0.70 0.71 0.78 0.56 0.88 0.43
⌈n4/5

⌉ 0.71 0.70 0.80 0.56 0.91 0.41

n = 1000 n = 2000 n = 5000

Coverage Avg Length Coverage Avg Length Coverage Avg Length

Smoothed 0.97 0.35 0.97 0.26 0.97 0.17
Classical 0.86 0.27 0.88 0.20 0.90 0.14
⌈n1/2

⌉ 0.86 0.33 0.93 0.27 0.96 0.20
⌈n2/3

⌉ 0.93 0.33 0.96 0.26 0.96 0.18
⌈n4/5

⌉ 0.92 0.31 0.94 0.24 0.94 0.16

Finally, in Table 3 we consider two simulation scenarios where p is not differentiable and thus p̂n cannot achieve the rate
required in (S1). For both simulation scenarios in Table 3, we fix β0 =

1
√
2
(1, 1)⊤ and assume that

U |X ∼ N
(
0,

1
(1 + |X |

2)2

)
and Y = 1β⊤

0 X+U≥0. (14)

For the first simulation scenario, we assume that X1 and X2 are i.i.d. from a truncated Triangular distribution and for the
second simulation scenario, we assume that X1 and X2 are i.i.d. from a truncated standard Laplace distribution, i.e.,

X1, X2
i.i.d.
∼

1
3

[
(2 + t)1−1≤t≤0 + (2 − t)10≤t≤1

]
and X1, X2

i.i.d.
∼

exp(−|t|)1−2≤t≤2

1 − exp(−2)
, (15)

respectively. As in Fig. 1 and Table 1, we use the fourth order product Gaussian kernel to estimate p and the Epanechnikov
product kernel to estimate κ. The sample sizes, number of samples, the bandwidth selection criterion, and the number
of bootstrap replicates for each sample in both the simulation scenarios are identical to those in Table 1. Even though,
for both the scenarios in Table 3, p does not satisfy the smoothness requirements of Theorem 3.1, the simulation results
clearly illustrate that the proposed smoothed bootstrap procedure maintains the nominal coverage. As in Tables 1 and 2, the
confidence intervals based on the competing bootstrap schemes do not achieve the nominal coverage.

It is easy to see from (3) that β̂n is the maximizer of a step function which is not convex. Thus, the computational
complexity of finding the maximum score estimator and that of the bootstrap procedures increase with sample size and
dimension; see Manski and Thompson (1986), Pinkse (1993) and Florios and Skouras (2007) for discussions on the
computational aspect of the maximum score estimator. All simulations in this paper were done on a High Performance
Computing (HPC) cluster with Intel E5-2650L processors running R software over Red Hat Enterprise Linux. For d = 6
and n = 10 000, each of the 500 independent replications took an average of 33 h to evaluate the smoothed bootstrap
confidence interval, while it took 23 h to compute the classical bootstrap interval, and 3 h for the m-out-of-n bootstrap
procedure with bn = n4/5. We would like to point out that the routine implementing the different bootstrap procedures has
not been optimized. Furthermore as bootstrap procedures are embarrassingly parallel, distributed computing can be used to
drastically reduce the computation time. The code to compute the proposed smoothed bootstrap procedure can be found
at http://stat.ufl.edu/~rohitpatra/research.html. The following remarks are now in order.

http://stat.ufl.edu/%7Erohitpatra/research.html
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Table 2
The estimated coverage probabilities and average lengths (obtained from 500 independent replicates with 500 bootstrap replications) of nominal 95%
confidence intervals for the first coordinate of β0 . For all values of d, we have n = 104 i.i.d. observations from U |X ∼ N(0, (1 + |X |

2)−2), X ∼

Uniform([−1, 1]d), Y = 1β⊤
0 X+U≥0, and β0 = d−1/2(1, . . . , 1)⊤ ∈ Rd .

d = 3 d = 4 d = 5 d = 6

Coverage Len. Coverage Len. Coverage Len. Coverage Len.

Smoothed 0.92 0.12 0.95 0.12 0.99 0.12 0.98 0.12
Classical 0.69 0.13 0.73 0.12 0.74 0.10 0.76 0.09
⌈n1/2

⌉ 0.73 0.08 0.76 0.08 0.77 0.07 0.84 0.07
⌈n2/3

⌉ 0.83 0.12 0.85 0.11 0.86 0.10 0.90 0.09
⌈n4/5

⌉ 0.81 0.13 0.82 0.12 0.81 0.11 0.86 0.10

Table 3
The estimated coverage probabilities and average lengths of nominal 95% confidence intervals for the first coordinate of β0 obtained using the 5 different
bootstrap schemes for the data generating mechanism described in (14) and (15).

X1, X2
i.i.d.
∼

1
3

[
(2 + t)1−1≤t≤0 + (2 − t)10≤t≤1

]
n = 100 n = 200 n = 500

Coverage Avg Length Coverage Avg Length Coverage Avg Length

Smoothed 0.77 1.08 0.83 0.81 0.93 0.57
Classical 0.55 0.79 0.60 0.62 0.66 0.47
⌈n1/2

⌉ 0.56 0.79 0.61 0.66 0.69 0.48
⌈n2/3

⌉ 0.58 0.82 0.64 0.64 0.73 0.47
⌈n4/5

⌉ 0.59 0.80 0.62 0.63 0.73 0.48

n = 1000 n = 2000 n = 5000

Coverage Avg Length Coverage Avg Length Coverage Avg Length

Smoothed 0.95 0.44 0.95 0.33 0.94 0.23
Classical 0.67 0.36 0.67 0.28 0.65 0.20
⌈n1/2

⌉ 0.72 0.38 0.78 0.30 0.84 0.22
⌈n2/3

⌉ 0.78 0.38 0.82 0.31 0.87 0.23
⌈n4/5

⌉ 0.78 0.38 0.80 0.30 0.80 0.22

X1, X2
i.i.d.
∼

1
1−exp(−2) exp(−|t|)1−2≤t≤2,

n = 100 n = 200 n = 500

Coverage Avg Length Coverage Avg Length Coverage Avg Length

Smoothed 0.93 0.61 0.97 0.46 0.98 0.30
Classical 0.62 0.40 0.66 0.32 0.67 0.22
⌈n1/2

⌉ 0.67 0.46 0.78 0.36 0.87 0.26
⌈n2/3

⌉ 0.69 0.44 0.82 0.36 0.88 0.26
⌈n4/5

⌉ 0.70 0.43 0.79 0.35 0.83 0.25

n = 1000 n = 2000 n = 5000

Coverage Avg Length Coverage Avg Length Coverage Avg Length

Smoothed 0.98 0.22 0.97 0.17 0.98 0.12
Classical 0.68 0.16 0.71 0.12 0.69 0.09
⌈n1/2

⌉ 0.92 0.21 0.95 0.17 0.98 0.12
⌈n2/3

⌉ 0.89 0.21 0.92 0.16 0.93 0.11
⌈n4/5

⌉ 0.82 0.19 0.84 0.14 0.84 0.10

Remark 4.1. Given a bandwidth choice for p̂n and κ̂n, a single bootstrap replicate for the classical and smoothed bootstrap
procedure have the same computational complexity. However to evaluate the smoothed bootstrap confidence interval, we
need to construct β̃n for the data set. This can be computationally intensive, especially when the sample size and dimension
are large.

Remark 4.2. We did not choose bn in the m-out-of-n bootstrap method using any specific data-driven rule, as the
computational complexities of such a method can be orders of magnitude higher. However, we tried bn = ⌈n1/3

⌉, ⌈n9/10
⌉

and ⌈n14/15
⌉ but their results were inferior to the reported choices (⌈n1/2

⌉, ⌈n2/3
⌉ and ⌈n4/5

⌉). Furthermore, we would like
to point out that finite sample performance of smoothed bootstrap is superior to that of those obtained by Delgado et al.
(2001) using subsampling (sampling without replacement) bootstrap methods.

5. A convergence theorem

We now present a convergence theorem for triangular arrays of random variables arising from the binary choice model
discussed above. This theoremwill be used in Section 6 to prove Theorem 3.1. Note that in Section 3.1, the bootstrap samples
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are distributed according to a random sequence of measures {Q̂n}. However, conditional on the observed data, Q̂n is not
random (as Q̂n is determined by the observed data). Since in this paper we are interested in the (bootstrap) distribution
of the maximum score estimator based on (X∗

n,1, Y
∗

n,1), . . . , (X
∗
n,n, Y

∗
n,n) given the data, we are essentially concerned with the

distribution of the maximum score estimator for a triangular array based on a deterministic sequence of measures {Qn} (as
we are conditioning on the observed data). Further, in Theorem 3.1, we show that under conditions (S1)–(S3) the random
sequence {Q̂n} satisfies the assumptions of the main result in this section (Theorem 5.1) for ‘‘almost every’’ data sequences.
This justifies the study of the maximum score estimator based on a triangular array derived from a deterministic sequence
of measures.

The main result in this section (Theorem 5.1) gives the limiting distribution of the maximum score estimator for a
triangular array of randomvariables generated from fixed sequence ofmeasures {Qn}. This is a generalization of Theorem4.7
in Kim and Pollard (1990). Some of the sufficient conditions (see (A1)–(A4)) for establishing the asymptotic behavior of the
maximum score estimator are high level but isolate and emphasize the crucial properties required from the sequence of
distributions generating the triangular array. This theorem can be used to prove consistency of any bootstrap scheme.

Suppose that we are given a probability space (Ω,A, P) and a triangular array of random variables {(Xn,j, Yn,j)}n∈N1≤j≤mn
where (mn)∞n=1 is a sequence of natural numbers satisfying mn ↑ ∞ as n → ∞, and Xn,j and Yn,j are Rd and {0, 1}-
valued random variables, respectively. Furthermore, assume that the rows {(Xn,1, Yn,1), . . . , (Xn,mn , Yn,mn )} are formed by
i.i.d. random variables. We denote the distribution of (Xn,j, Yn,j), 1 ≤ j ≤ mn, n ∈ N, byQn and the density of Xn,j by pn. Recall
the probability measure P on Rd+1 and the notation introduced in Section 2. Denote by P∗

n the empirical measure defined by
the row (Xn,1, Yn,1), . . . , (Xn,mn , Yn,mn ). Consider the class of functions

F :=

{
fα(x, y) :=

(
y −

1
2

)
1α⊤x≥0 : α ∈ Rd

}
, (16)

G :=

{
gβ (x) :=

(
κ(x) −

1
2

)
1β⊤x≥0 : β ∈ Rd

}
. (17)

We will say that β∗
n ∈ Sd−1 is a maximum score estimator based on (Xn,i, Yn,i), 1 ≤ i ≤ mn, if

β∗

n = argmax
β∈Sd−1

1
mn

mn∑
i=1

(
Yn,i −

1
2

)
1β⊤Xn,i≥0 = argmax

β∈Sd−1
P∗

n(fβ ),

where fβ is defined in (16). For any set Borel set A ⊂ Rd, let νn(A) :=
∫
A pn(x)dx. We take the measures {Qn}n∈N and densities

{pn}n∈N to satisfy the following conditions:

(A1) ∥Qn − P∥G → 0 and the sequence {νn}
∞

n=1 is uniformly tight. Moreover, pn is continuously differentiable on X◦ and
∇pn is integrable (with respect to the Lebesgue measure) over X.

(A2) For each n ∈ N there is a continuously differentiable function κn : X → [0, 1] such that

κn(x) = Qn(Y = 1|X = x)

for all n ∈ N, and ∥κn − κ∥X → 0 for every compact set X ⊂ X◦.

For n ∈ N, define Γn : Rd
→ R as

Γn(β) := Qn
(
fβ
)

=

∫ (
κn(x) −

1
2

)
1β⊤x≥0 pn(x) dx. (18)

(A3) Assume that

βn := argmax
β∈Sd−1

Γn(β), (19)

exists for all n, and∫
β⊤
n x=0

(∇κn(x)⊤βn) pn(x)xx⊤ dσβn →

∫
β⊤
0 x=0

(∇κ(x)⊤β0) p(x)xx⊤ dσβ0 , (20)

where the above terms are standard surface integrals and σβn denotes the surface measure over {x ∈ Rd
: β⊤

n x = 0},
for all n ≥ 0.

Let Fn,K be a measurable envelope of the class of functions

Fn,K := {1β⊤x≥0 − 1β⊤
n x≥0 : |β − βn| ≤ K }.

Note that there are two small enough constants C, K∗ > 0 such that for any 0 < K ≤ K∗ and n ∈ N, Fn,K can be taken to be
of the form 1β⊤

K x≥0>α⊤
K x + 1α⊤

K x≥0>β⊤
K x for αK , βK ∈ Rd satisfying |αK − βK | ≤ CK .
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(A4) Assume that there exist R0, ∆0 ∈ (0, K∗ ∧ 1] and a decreasing sequence {ϵn}
∞

n=1 of positive numbers with ϵn ↓ 0 such
that for any n ∈ N and for any ∆0m

−1/3
n < R ≤ R0 we have

(i) |(Qn − P)(F 2
n,R)| ≤ ϵ1R;

(ii) sup |α−βn |∨|β−βn |≤R
|α−β|≤R

⏐⏐(Qn − P)(1α⊤X≥0 − 1β⊤X≥0)
⏐⏐ ≤ ϵnRm

−1/3
n .

In Lemma A.1, we show that conditions (A1)–(A3) imply that Γn, as defined in (18), is twice continuously differentiable
in a neighborhood of βn. The main properties of Γ and Γn are established in Lemma A.1 of the appendix.

5.1. Consistency and rate of convergence

In this sub-section we study the asymptotic properties of β∗
n . Before attempting to prove any asymptotic results, we will

state the following lemma, proved in Section 7, which establishes an important relationship between the βn’s, defined in
(19), and β0.

Lemma 5.1. Under (A1) and (A2), we have βn → β0.

In the following lemma, proved in Section 7, we show that β∗
n is a consistent estimator of β0.

Lemma 5.2. If (A1) and (A2) hold, β∗
n

P
−→ β0.

We will now deduce the rate of convergence of β∗
n . It will be shown that β∗

n converges at rate m−1/3
n . The proof of this

fact relies on empirical processes arguments like those used to prove Lemma 4.1 in Kim and Pollard (1990). The following
two lemmas, proved in Section 7, adopt these ideas to our context (a triangular array in which variables in the same row are
i.i.d.). The first lemma is a maximal inequality specially designed for this situation.

Lemma 5.3. Under (A1), (A2), and (A4), there is a constant CR0 > 0 such that for any R > 0 and n ∈ N such that
∆0m

−1/3
n ≤ Rm−1/3

n ≤ R0 we have

E

(
sup

|βn−β|≤Rm−1/3
n

{
|(P∗

n − Qn)(fβ − fβn )|
}2)

≤ CR0Rm
−4/3
n ∀ n ∈ N.

With the aid of Lemma 5.3 we can now derive the rate of convergence of the maximum score estimator.

Lemma 5.4. Under (A1), (A2), and (A4), m1/3
n (β∗

n − βn) = OP(1).

5.2. Asymptotic distribution

Before going into the derivation of the limit law of β∗
n , we need to introduce some further notation. Consider a sequence

of matrices (Hn)∞n=1 ⊂ Rd×(d−1) and H ∈ Rd×(d−1) satisfying the following properties:

(a) ξ ↦→ Hnξ and ξ ↦→ Hξ are bijections from Rd−1 to the hyperplanes {x ∈ Rd
: β⊤

n x = 0} and {x ∈ Rd
: β⊤

0 x = 0},
respectively.

(b) The columns of Hn and H form orthonormal bases for {x ∈ Rd
: β⊤

n x = 0} and {x ∈ Rd
: β⊤

0 x = 0}, respectively.
(c) There is a constant CH > 0, depending only on H , such that ∥Hn − H∥2 ≤ CH |βn − β0|.

We now give an intuitive argument for the existence of such a sequence ofmatrices. Imagine that we find an orthonormal
basis {e0,1, . . . , e0,d−1} for the hyperplane {x ∈ Rd

: β⊤

0 x = 0} and we let H have these vectors as columns. We then obtain
the rigid motion T : Rd

→ Rd that moves β0 to βn and the hyperplane {x ∈ Rd
: β⊤

0 x = 0} to {x ∈ Rd
: β⊤

n x = 0}. We let the
columns of Hn be given by {T e0,1, . . . , T e0,d−1}. The resulting sequence of matrices will satisfy the (a), (b) and (c) for some
constant CH .

Note that (b) implies that H⊤
n and H⊤ are the Moore–Penrose pseudo-inverses of Hn and H , respectively. In particular,

H⊤
n Hn = H⊤H = Id−1, where Id−1 is the identity matrix in Rd−1 (in the sequel we will always use this notation for identity

matrices on Euclidean spaces). Additionally, it can be inferred from (b) that H⊤
n (Id −βnβ

⊤
n ) = H⊤

n and H⊤(Id −β0β
⊤

0 ) = H⊤.
Now, for each s ∈ Rd−1 define

βn,s :=

(√
1 − (m−1/3

n |s|)2 ∧ 1 βn + m−1/3
n Hns

)
1

|s|≤m1/3
n

+ |s|−1Hns1
|s|>m1/3

n
. (21)

Note that βn,s ∈ Sd−1 as β⊤
n Hns = 0 and |Hns| = |s| for all s ∈ Rd−1. Also, as s varies in the set |s| < m1/3

n , βn,s takes all values
in the set {β ∈ Sd−1

: β⊤
n β > 0}. Furthermore, if |s| ≤ m1/3

n , Hns is the orthogonal projection of βn,s onto the hyperplane
{x ∈ Rd

: β⊤
n x = 0}; otherwise βn,s is orthogonal to βn. Define the process

Λn(s) := m2/3
n P∗

n(fβn,s − fβn )
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and

s∗n := argmax
s∈Rd−1

Λn(s) = argmax
s∈Rd−1

P∗

n(fβn,s ).

Recall that β∗
n = argmaxβ∈Sd−1P∗

nfβ . As β∗
n converges to βn, β∗

n will belong to the set {β ∈ Sd−1
: β⊤

n β > 0} with probability
tending to one. Thus, βn,s∗n = β∗

n and |s∗n| < m1/3
n with probability tending to one, as n → ∞. Note that by (21), we have

β∗

n =

√
1 − (m−1/3

n s∗n)2 ∧ 1βn + m−1/3
n Hns∗n,

when |s∗n| < m1/3
n . Rearranging the terms in the above display, we get

s∗n = m1/3
n H⊤

n (β∗

n − βn) + m1/3
n

[√
1 − (m−1/3

n s∗n)2 ∧ 1 − 1
]
H⊤

n βn,

when |s∗n| < m1/3
n . As H⊤

n βn = 0 (from the definition of Hn), we have

s∗n = m1/3
n H⊤

n (β∗

n − βn), (22)

with probability tending to 1, as n → ∞. Considering this, we will regard the processes {Λn}n≥1 as random elements in the
space of locally bounded real-valued functions onRd−1 (denoted byBloc(Rd−1)) and then derive the limit lawof s∗n by applying
the argmax continuous mapping theorem. We will take the space Bloc(Rd−1) with the topology of uniform convergence on
compacta; our approach is based on that of Kim and Pollard (1990).

To properly describe the asymptotic distribution we need to define the function Σ : Rd−1
× Rd−1

→ R as follows:

Σ(s, t) :=
1
4

∫
Rd−1

{[(s⊤ξ ) ∧ (t⊤ξ )]+ + [(s⊤ξ ) ∨ (t⊤ξ )]−}p(Hξ ) dξ

=
1
8

∫
Rd−1

(|s⊤ξ | + |t⊤ξ | − |(s − t)⊤ξ |)p(Hξ ) dξ .

Additionally, denote byWn the Bloc(Rd−1)-valued process given by

Wn(s) := m2/3
n (P∗

n − Qn)(fβn,s − fβn ).

In what follows, the symbol ⇝ will denote convergence in distribution. We are now in a position to state and prove our
convergence theorem.

Theorem 5.1. Assume that (A1)–(A4) hold. Then, there is a Bloc(Rd−1)-valued stochastic process Λ of the form Λ(s) =

W (s)+ 1
2 s

⊤H⊤
∇

2Γ (β0)Hs, whereW is a zero-mean Gaussian process in Bloc(Rd−1)with continuous sample paths and covariance
function Σ . Moreover, Λ has a unique maximizer w.p. 1 and we have

(i) Λn ⇝ Λ in Bloc(Rd−1),
(ii) s∗n ⇝ s∗ := argmaxs∈Rd−1Λ(s),
(iii) m1/3

n (β∗
n − βn) ⇝ Hs∗.

Proof. Lemmas A.3 and A.4 imply that the sequence (Wn)∞n=1 is stochastically equicontinuous and that its finite dimensional
distributions converge to those of a zero-mean Gaussian process with covariance Σ . From Theorem 2.3 in Kim and Pollard
(1990) we know that here exists a continuous process W with these properties and such that Wn ⇝ W . By definition of
Γn, note that Λn(·) = Wn(·) + m2/3

n (Γn(βn,(·)) − Γn(βn)). Moreover, from Lemma A.1, we have m2/3
n (Γn(βn,(·)) − Γn(βn))

P
−→

1
2 (·)

⊤H⊤
∇

2Γ (β0)H(·) onBloc(Rd−1) (with the topology of uniformconvergence on compacta). Thus, applying Slutsky’s lemma
(see e.g., Example 1.4.7, page 32 in van der Vaart andWellner (1996))we get thatΛn ⇝ Λ. The uniqueness of themaximizers
of the sample paths of Λ follows from Lemmas 2.5 and 2.6 in Kim and Pollard (1990). Finally an application of Theorem 2.7
in Kim and Pollard (1990) gives (ii), and (iii) follows from (22). □

As a corollary we immediately obtain the asymptotic distribution of the maximum score estimator (taking κn ≡ κ and
βn ≡ β0) computed from i.i.d. samples from P.

Corollary 5.1. If (Xn, Yn)∞n=1
i.i.d.
∼ P and β̂n is a maximum score estimator computed from (Xi, Yi)ni=1, for every n ≥ 1, then,

n1/3(β̂n − β0) ⇝ H argmax
s∈Rd−1

Λ(s).

One final remark is to be made about the process Λ. The quadratic drift term can be rewritten, by using the matrix H to
evaluate the surface integral, to obtain the following more convenient expression

Λ(s) = W (s) −
1
2
s⊤
(∫

Rd−1
(∇κ(Hξ )⊤β0)p(Hξ )ξξ⊤ dξ

)
s.
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Remark. Theorem 5.1 gives us a general framework to prove the consistency of any bootstrap scheme. For example, if Q̂n
is an estimator of P, computed from the data, such that (A1)–(A4) hold in probability or a.s. (see the proof of Theorem 3.1),
then the bootstrap scheme which generates bootstrap samples from Q̂n will be consistent.

6. Proof of Theorem 3.1

In this sectionwe use Theorem 5.1 to prove Theorem 3.1. Note that in Section 5we studied the limiting distribution of the
maximum score estimator for a triangular array of random variables arising from a deterministic sequence of distributions
{Qn}. However in the smoothed bootstrap procedure proposed in Section 3.1, we are interested in behavior of themaximum
score estimator arising from a sequence of random probability measures {Q̂n}. To show that the smoothed bootstrap
procedure is consistent, we show that (A1)–(A4) are satisfied by {Q̂n} in probability.

In light of the above discussion we set κn = κ̂n, βn = β̃n. By the discussion immediately preceding the statement
of Theorem 3.1, we have that to prove (8) it is enough to show that (12) holds. Moreover, to prove ρ(Ĝn,G)

p
→ 0, it is

enough to show that for every subsequence {nk} there exists a further subsequence {nkl} such that conditional on the data
Z , ρ(Ĝnkl

,G)
a.s.
→ 0; see Theorem 2.3.2 of Durrett (2010). To show that ρ(Ĝnkl

,G) → 0 a.e. data (X1, Y1), . . . , (Xn, Yn) we
appeal to Theorem 5.1. To apply Theorem 5.1 we need to show that conditions (A1)–(A4) hold along the subsequence {nkl}

for a.e. (X1, Y1), . . . , (Xn, Yn).
First observe that (S2) implies that (A2) holds along {nkl} a.s. We first show that ∥Q̂n − P∥G

P
→ 0. Observe that by

assumption (S1),

|(Q̂n − P)(gβ (X))| =

⏐⏐⏐⏐∫
X

(
κ(x) −

1
2

)
1β⊤x≥0(p̂n(x) − p(x)) dx

⏐⏐⏐⏐ ≤ ∥p̂n − p∥X
P

−→ 0.

As p̂n converges to p uniformly, νn converges and is thus uniformly tight. This shows that (A1) holds along a further
subsequence of {nk} for a.e. data sequence. Next we will show that (A3) hold in probability and the probability that
inequalities (A4) (i)–(ii) holds tend to 1 as n → ∞.

We will now show that (20) holds in probability with κn = κ̂n, pn = p̂n and βn = β̃n. The proof of (A3) is slightly more
involved and we describe the details below. Without loss of generality6 we can assume that X is the closed unit ball in Rd

and write Xρ := (1 − ρ)X, for any 0 < ρ < 1. By triangle inequality
∫

β̃⊤
n x=0

(∇κ̂n(x)⊤β̃n)p̂n(x)xx⊤dσβ̃n
−

∫
β⊤
0 x=0

(∇κ(x)⊤β0)p(x)xx⊤dσβ0


2

≤ Un + Zn + Vn

where

Un :=

∫
β̃⊤
n x=0

(∇κ̂n(x) − ∇κ(x))⊤β̃np̂n(x)xx⊤ dσβ̃n


2

,

Zn :=

∫
β̃⊤
n x=0

∇κ(x)⊤β̃n(p̂n(x) − p(x))xx⊤ dσβ̃n


2

, and

Vn :=


∫

β̃⊤
n x=0

(∇κ(x)⊤β̃n) p(x)xx⊤ dσβ̃n
−

∫
β⊤
0 x=0

(∇κ(x)⊤β0) p(x)xx⊤ dσβ0


2

.

Consider the matrices H and (Hn)∞n=1 described at the beginning of Section 5.2. Then Vn can be expressed as∫
Rd−1

(∇κ(Hnξ )⊤β̃n) p(Hnξ )Hnξξ⊤H⊤

n dξ −

∫
Rd−1

(∇κ(Hξ )⊤β0) p(Hξ )Hξξ⊤H⊤ dξ

2
.

As p has compact support (both ∇κ and p are bounded) and the Hn’s are linear isometries, we can apply the dominated
convergence theorem to show that the above display goes to zero w.p. 1. Note that β̃n and thus Hn’s converge to β0 and H ,
respectively, w.p. 1 as a consequence of Lemma 5.1 and observation (c) in the beginning of Section 5.2.

On the other hand, Un is bounded from above by

∥∇κ̂n − ∇κ∥X ∥p̂n∥X

∫
β̃⊤
n x=0

1−ρ≤|x|≤1

|x|2 dσβ̃n
+ ∥∇κ̂n − ∇κ∥Xρ ∥p̂n∥X

∫
β̃⊤
n x=0
|x|≤1

|x|2 dσβ̃n
.

6 For a general convex compact set X with non-empty interior define R∗
:= sup{R > 0 : ∂B(0, R) ∩ X ̸= ∅}, where ∂B(0, R) is the boundary of the ball

of radius R around 0 in Rd . For any 0 < ρ < R∗ , take Xρ := X ∩ B(0, R∗
− ρ). The proof would now follow with appropriate changes in the domains of

integration.
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From the results in Blondin (2007) we know that ∥∇κ̂n(x) − ∇κ(x)∥Xρ

a.s.
→ 0. Thus, noting that these surface integrals are

β̃n-invariant, we get

Un ≤ ∥∇κ̂n − ∇κ∥X ∥p̂n∥X

∫
β⊤
0 x=0

1−ρ≤|x|≤1

|x|2 dσβ0 + oP(1).

For any ϵ > 0 we can chooseMϵ large enough, and ρϵ sufficiently small so that

sup
n≥1

P
(
∥∇κ̂n − ∇κ∥X > Mϵ

)
<

ϵ

2
and Mϵ(∥p∥X + op(n−1/3))

∫
β⊤
0 x=0

1−ρϵ≤|x|≤1

|x|2 dσβ0 <
ϵ

2
.

Thus for all sufficiently large n ∈ N,

P(Un > ϵ) ≤ P(∥∇κ̂n − ∇κ∥X > Mϵ) + P(Un > ϵ, ∥∇κ̂n − ∇κ∥X ≤ Mϵ) < ϵ.

Finally, Zn can be bounded from above as∫
β̃⊤
n x=0

∇κ(x)⊤β̃n(p̂n(x) − p(x))xx⊤ dσβ̃n


2

≤ ∥∇κ∥X∥p̂n − p∥X

∫
β̃⊤
n x=0
|x|≤1

|x|2 dσβ̃n
= op(n−1/3).

To see that (A4) holds, we will first show (A4)–(ii). Observe that the set {x ∈ Rd
: α⊤x ≥ 0 > β⊤x} is a multi-dimensional

wedge-shaped region inRd, which subtends an angle of order |α−β| at the origin. AsX is a compact subset ofRd (assumption
(C1)), we have that∫

X

|1α⊤x≥0 − 1β⊤x≥0| dx ≲ |α − β|,

where by≲wemean bounded from above by a constant multiple; also see Example 6.4, page 214 of Kim and Pollard (1990).
Thus, for any α, β ∈ Rd, we have

|(Q̂n − P)(1α⊤X≥0 − 1β⊤X≥0)|

=

⏐⏐⏐⏐∫
X

(1α⊤x≥0 − 1β⊤x≥0)(p̂n(x) − p(x)) dx
⏐⏐⏐⏐

≲|α − β|∥p̂n − p∥X.

It is now straightforward to show that (A4)–(ii) will hold in probability because ∥p̂n − p∥X = oP(n−1/3). A similar argument
gives (A4)–(i).

7. Proofs of results in Section 5.1

7.1. Proof of Lemma 5.1

Let ϵ > 0 and consider a compact set Xϵ such that Qn(Xϵ × R) > 1 − ϵ for all n ∈ N (its existence is guaranteed by (A1)).
Then,

|Γn(β) − Qn(gβ )| ≤ 2Qn((Rd
\ Xϵ) × R) + ∥κn − κ∥Xϵ

for all β ∈ Sd−1, where gβ is defined in (17). Consequently, (A2) shows that lim∥Γn(β)−Qn(gβ )∥Sd−1 ≤ 2ϵ. Moreover, from
(A1), we have that ∥Qn − P∥G → 0. Therefore, as ϵ > 0 is arbitrary and Γ (β) = P(gβ ), we have

∥Γn − Γ ∥Sd−1 → 0. (23)

Considering thatβ0 is the uniquemaximizer of the continuous functionΓ wecan conclude the desired result asβn maximizes
Γn and the argmax function is continuous (under the sup-norm) for continuous functions on compact spaces with unique
maximizers.

7.2. Proof of Lemma 5.2

Recall that β0 is the well-separated unique maximizer of P(fβ ) ≡ Γ (β). Thus, the result would follow as a simple
consequence of the argmax continuous mapping theorem (see e.g., Corollary 3.2.3, van der Vaart and Wellner (1996)) if
we can show that ∥(P∗

n − P)(fβ )∥Sd−1
P

−→ 0. As

∥(P∗

n − P)(fβ )∥Sd−1 ≤ ∥(P∗

n − Qn)(fβ )∥Sd−1 + ∥Γn − Γ ∥Sd−1 ,
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in view of (23), it is enough to show that E
(
∥P∗

n − Qn∥F
)

→ 0. Now consider the classes of functions F1 := {y1α⊤x≥0 :

α ∈ Rd
} and F2 := {1α⊤x≥0 : α ∈ Rd

}. Note that as F = F1 −
1
2F2, it follows that E

(
∥P∗

n − Qn∥F
)

≤ E
(
∥P∗

n − Qn∥F1

)
+

E
(
∥P∗

n − Qn∥F2

)
. Furthermore, observe that both F1 and F2 have the constant one as a measurable envelope function. The

proof of the lemma would be complete if we can show the classes of functions F1 and F2 are manageable in the sense
of definition 4.1 of Pollard (1989), as by corollary 4.3 of Pollard (1989) we will have E

(
∥P∗

n − Qn∥Fi

)
≤ Ji/

√
mn for

i = 1, 2, where the constants J1 and J2 are positive and finite. As VC-subgraph classes of functionswith bounded envelope are
manageable, we will next show that both F1 and F2 are VC-subgraph classes of functions. Since the class of all half-spaces
of Rd+1 is VC (see Exercise 14, page 152 in van der Vaart and Wellner (1996)), Lemma 2.6.18 in page 147 of van der Vaart
and Wellner (1996) implies that both F1 = {y1α⊤x≥0 : α ∈ Rd

} and F2 are VC-subgraph classes of functions.

7.3. Proof of Lemma 5.3

Take R0 ≤ K∗, so for anyK ≤ R0 the class {fβ−fβn}|β−βn|<K ismajorized by Fn,K . Our assumptions onP then imply that there
is a constant C̃ such that P(F 2

n,K ) = P(Fn,K ) ≤ C̃CK for 0 < K ≤ K∗ (recall that Fn,K is an indicator function). Note that the last
inequality follows as (α, β) ↦→ P(β⊤X ≤ 0 < α⊤X) is continuously differentiable around (βn, βn) (which can be shownusing
similar ideas as in Lemma A.1), and thus locally Lipschitz. Now, take R > 0 and n ∈ N such that ∆0m

−1/3
n < Rm−1/3

n ≤ R0.
Since Fn,Rm−1/3

n
is a VC-class (with VC index bounded by a constant independent of n and R), the maximal inequality 7.10 in

page 38 of Pollard (1990) implies the existence of a constant J , not depending neither onmn nor on R, such that

E
(

∥P∗

n − Qn∥
2
F

n,Rm−1/3
n

)
≤ JQn(Fn,Rm−1/3

n
) m−1

n .

From (A4)–(i) we can conclude that

E
(

∥P∗

n − Qn∥
2
F

n,Rm−1/3
n

)
≤ J(O(m−1/3

n ) + C̃CRm−1/3
n ) m−1

n

for all R and n for whichm−1/3
n R ≤ R0. This finishes the proof.

7.4. Proof of Lemma 5.4

Take R0 as in (A4), let ϵ > 0 and define

Mϵ,n := inf

⎧⎪⎨⎪⎩a > 0 : sup
|β−βn |≤R0
β∈Sd−1

{|(P∗

n − Qn)(fβ − fβn )| − ϵ|β − βn|
2
} ≤ am−2/3

n

⎫⎪⎬⎪⎭ ;

Bn,j :={β ∈ Sd−1
: (j − 1)m−1/3

n < |β − βn| ≤ jm−1/3
n ∧ R0}.

Then, by Lemma 5.3 we have

P
(
Mϵ,n > a

)
=P

(
∃ β ∈ Sd−1, |β − βn| ≤ R0 : |(P∗

n − Qn)(fβ − fβn )| > ϵ|β − βn|
2
+ a2m−2/3

n

)
≤

∞∑
j=1

P
(
∃ β ∈ Bn,j : m2/3

n |(P∗

n − Qn)(fβ − fβn )| > ϵ2(j − 1)2 + a2
)

≤

∞∑
j=1

m4/3
n

(ϵ(j − 1)2 + a2)2
E

(
sup

|βn−β|<jm−1/3
n ∧R0

{
|(P∗

n − Qn)(fβ − fβn )|
}2)

≤CR0

∞∑
j=1

j
(ϵ(j − 1)2 + a2)2

→ 0 as a → ∞.

It follows that Mϵ,n = OP(1). From Lemma A.1-(c) we can find N ∈ N and R, ϵ > 0 such that Γn(β) ≤ Γn(βn) − 2ϵ|β − βn|
2

for all n ≥ N and β ∈ Sd−1 such that 0 < |β − βn| < R. Since Lemma 5.2 implies β∗
n − βn

P
−→ 0, with probability tending

to one we have

P∗

n(fβ∗
n − fβn ) ≤Qn(fβ∗

n − fβn ) + ϵ|β∗

n − βn|
2
+ M2

ϵ,nm
−2/3
n

≤Γn(β∗

n ) − Γn(βn) + ϵ|β∗

n − βn|
2
+ M2

ϵ,nm
−2/3
n

≤ − ϵ|β∗

n − βn|
2
+ M2

ϵ,nm
−2/3
n .

Therefore, since β∗
n is a maximum score estimator and Mϵ,n = OP(1) we obtain that ϵ|β∗

n − βn|
2

≤
3
2ϵn|β

∗
n − βn|m

−1/3
n +

OP(m
−2/3
n ). This finishes the proof.
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Appendix A. Auxiliary results for the proof of Theorem 5.1

Lemma A.1. Denote by σβ the surface measure on the hyperplane {x ∈ Rd
: β⊤x = 0}. For each α, β ∈ Rd

\{0} define the matrix
Aα,β := (Id − |β|

−2ββ⊤)(Id − |α|
−2αα⊤) + |β|

−1
|α|

−1βα⊤. Note that, x ↦→ Aα,βx maps the region {α⊤x ≥ 0} to {β⊤x ≥ 0},
taking {α⊤x = 0} onto {β⊤x = 0}. Recall the definitions of Γn (see (18)) and Γ (see (4)). Then,

(a) β0 is the only maximizer of Γ on Sd−1 and we have7

∇Γ (β) =
β⊤β0

|β|
2

(
Id −

1
|β|

2 ββ⊤

)∫
β⊤
0 x=0

(
κ(Aβ0,βx) −

1
2

)
p(Aβ0,βx)x dσβ0 ,

∇
2Γ (β0) = −

∫
β⊤
0 x=0

(∇κ(x)⊤β0) p(x)xx⊤ dσβ0 .

Furthermore, there is an open neighborhood U ⊂ Rd of β0 such that β⊤
∇

2Γ0(β0)β < 0 for all β ∈ U \ {tβ0 : t ∈ R}.
(b) Under (A1)–(A3), we have

∇Γn(β) =
β⊤βn

|β|
2

(
Id −

1
|β|

2 ββ⊤

)∫
β⊤
n x=0

(
κn(Aβn,βx) −

1
2

)
pn(Aβn,βx)x dσβn ,

∇
2Γn(βn) = −

∫
β⊤
n x=0

(∇κn(x)⊤βn) pn(x)xx⊤ dσβn .

(c) If conditions (A1)–(A3) hold, then ∇
2Γn(βn) → ∇

2Γ (β0). Consequently, there is N ≥ 0 and a subset Ũ ⊂ U such that for
any n ≥ N, βn is a strict local maximizer of Γn on Sd−1 and β⊤

∇
2Γn(βn)β < 0 for all β ∈ Ũ \ {tβn : t ∈ R}.

Proof. We start with (a). Lemma 2 in Manski (1985) implies that β0 is the only minimizer of Γ on Sd−1. The computation of
∇Γ and ∇

2Γ are based on those in Example 6.4 in page 213 of Kim and Pollard (1990).8 Note that for any x with β⊤

0 x = 0
we have ∇κ(x)⊤β0 ≥ 0 (because for x orthogonal to β0, κ(x + tβ0) ≤ 1/2 and κ(x + tβ0) ≥ 1/2 whenever t < 0 and t > 0,
respectively). Additionally, for any β ∈ Rd we have:

β⊤
∇

2Γ (β0)β = −

∫
β⊤
0 x=0

(∇κ(x)⊤β0)(β⊤x)2p(x) dσβ0 .

Thus, the fact that the set {x ∈ X◦
: (∇κ(x)⊤β0)p(x) > 0} is open (as p and ∇κ are continuous) and intersects the hyperplane

{x ∈ Rd
: β⊤

0 x = 0} implies that ∇
2Γ (β0) is negative definite on a set of the form U \ {tβ0 : t ∈ R} with U ⊂ Rd being an

open neighborhood of β0.
We now prove (b) and (c). By conditions (A1) and (A2) we have that κn is continuously differentiable on X and ∇pn is

integrable on X. Thus, we can compute ∇Γn by an application of the divergence theorem as in Example 6.4 in page 213
of Kim and Pollard (1990). By the change of variable formula for measures (see Theorem 16.13, page 216 of Billingsley
(1995)), we can express ∇Γn(β) as

β⊤

n β0
β⊤βn

|β|
2

(
Id −

1
|β|

2 ββ⊤

)∫
β⊤
0 x=0

(
κn(Aβn,βAβ0,βnx) −

1
2

)
pn(Aβn,βAβ0,βnx)Aβ0,βnx dσβ0 .

Starting with the above expression for ∇Γn we take the derivative with respect to β using the product rule and differentiate
under the integral sign. Recall that βn maximizes Γn(·), i.e., ∇Γn(βn) = 0. Thus, one of the terms in ∇

2Γn(βn) will be zero as
(note that Aβn,βn = Id)∫

β⊤
0 x=0

(
κn(Aβ0,βnx) −

1
2

)
pn(Aβ0,βnx)Aβ0,βnx dσβ0 = 0.

Hence, the only non-zero term in ∇
2Γn(βn) is −

∫
β⊤
n x=0(∇κn(x)⊤βn)pn(x)xx⊤dσβn . Part (c) now follows immediately from (b)

and condition (A3). □

7 See the last display in page 214 of Kim and Pollard (1990) and the second display in page 215 for the equivalent expression.
8 Kim and Pollard (1990) use Tβ to denote the map from {β⊤

0 x ≥ 0} to {β⊤x ≥ 0}. In our notation Tβ ≡ Aβ0,β .
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Lemma A.2. Let R > 0. Under (A1)–(A4) there is a sequence of random variables ∆R
n = OP(1) such that for every δ > 0 and

every n ∈ N we have,

sup
|s−t|≤δ
|s|∨|t|≤R

P∗

n

[
(fβn,s − fβn,t )

2]
≤ δ∆R

nm
−1/3
n .

Proof. Define Gn
R,δ := {fβn,s − fβn,t : |s − t| ≤ δ, |s| ∨ |t| ≤ R} and Gn

R := {fβn,s − fβn,t : |s| ∨ |t| ≤ R}. It can be shown that
Gn
R is manageable with envelope Gn,R := 3Fn,2Rm−1/3

n
(as |κn − 1/2| ≤ 1). Note that Gn,R is independent of δ. Moreover, our

assumptions on P then imply that there is a constant C̃ such that P(F 2
n,K ) = P(Fn,K ) ≤ C̃CK for 0 < K ≤ K∗, where the first

equality is true because Fn,K is an indicator function (see proof of Lemma 5.3 for more detail). Considering this, condition
(A4)–(i) implies that

QnG2
n,R ≲

⏐⏐(Qn − P)(F 2
n,2Rm−1/3

n
)
⏐⏐+ ⏐⏐P(F 2

n,2Rm−1/3
n

)
⏐⏐

≲ϵ12Rm−1/3
n + 2Rm−1/3

n = O(m−1/3
n ).

Thus, (A4)–(ii) and the maximal inequality 7.10 from Pollard (1990) show that there is a constant J̃R such that for all large
enough nwe have

E

⎛⎝ sup
|s−t|≤δ
|s|∨|t|≤R

P∗

n

[
(fβn,s − fβn,t )

2]⎞⎠
≤2E

⎛⎝ sup
|s−t|≤δ
|s|∨|t|≤R

P∗

n

(
|fβn,s − fβn,t |

)⎞⎠
≤2E

(
sup
f∈Gn

R

(P∗

n − Qn)|f |

)
+ 2 sup

f∈Gn
R,δ

Qn|f |

≤m−1/2
n 4ϵ1 J̃R

√
QnG2

n,R + 2 sup
f∈Gn

R

⏐⏐(Qn − P)|f |
⏐⏐+ 2 sup

f∈Gn
R,δ

P|f |

≤mn
−1/24ϵ1 J̃R

√
O(m−1/3

n ) +
2ϵnR

m1/3
n

+ 2 sup
f∈Gn

R,δ

P|f |.

On the other hand, our assumptions on P imply that the function P(1(·)⊤x≥0) is continuously differentiable, and hence
Lipschitz, on Sd−1. Thus, there is a constant L, independent of δ, such that

E

⎛⎝ sup
|s−t|≤δ
|s|∨|t|≤R

P∗

n

[
(fβn,s − fβn,t )

2]⎞⎠ ≤ o(m−1/3
n ) + δLm−1/3

n .

The result now follows. □

Lemma A.3. Under (A1)–(A4), for every R, ϵ, η > 0 there is δ > 0 such that

limn→∞P

⎛⎝ sup
|s−t|≤δ
|s|∨|t|≤R

{
m2/3

n

⏐⏐(P∗

n − Qn)(fβn,s − fβn,t )
⏐⏐} > η

⎞⎠ ≤ ϵ.

Proof. Let Ψn := m1/3
n P∗

n(4F
2
n,Rm−1/3

n
) = m1/3

n P∗
n(Fn,Rm−1/3

n
). Note that our assumptions on P then imply that there is a constant

C̃ such that P(F 2
n,K ) = P(Fn,K ) ≤ C̃CK for 0 < K ≤ K∗ (Fn,K is an indicator function). Considering this, conditions (A4)–(i) and

Lemma 5.3 imply that

E (Ψn) =m1/3
n Qn

(
P∗

nFn,Rm−1/3
n

)
=m1/3

n QnFn,Rm−1/3
n

=m1/3
n (Qn − P)(Fn,Rm−1/3

n
) + m1/3

n P(Fn,Rm−1/3
n

) = O(1).

Now, define

Φn := m1/3
n sup

|s−t|≤δ
|s|∨|t|≤R

{
P∗

n

(
(fβn,s − fβn,t )

2)} .
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The class of all differences fβn,s − fβn,t with |s| ∨ |t| ≤ R and |s − t| < δ is manageable (in the sense of definition 7.9 in
page 38 of Pollard (1990)) for the envelope function 2Fn,Rm−1/3

n
. By the maximal inequality 7.10 in Pollard (1990), there is a

continuous increasing function J with J(0) = 0 and J(1) < ∞ such that

E

⎛⎝ sup
|s−t|≤δ
|s|∨|t|≤R

{⏐⏐(P∗

n − Qn)(fβn,s − fβn,t )
⏐⏐}⎞⎠ ≤

1

m2/3
n

Qn

(√
ΨnJ (Φn/Ψn)

)
.

Let ρ > 0. Breaking the integral on the right on the events that Ψn ≤ ρ and Ψn > ρ and the applying Cauchy–Schwartz
inequality,

E

⎛⎝ sup
|s−t|≤δ
|s|∨|t|≤R

{
m2/3

n

⏐⏐(P∗

n − Qn)(fβn,s,βn − fβn,t ,βn )
⏐⏐}⎞⎠

≤
√

ρJ(1) +

√
E
(
Ψn1Ψn>ρ

)√
E (J (1 ∧ (Φn/ρ))),

≤
√

ρJ(1) +

√
E
(
Ψn1Ψn>ρ

)√
E
(
J
(
1 ∧ (δ∆R

n/ρ)
))

,

where ∆R
n = OP(1) is as in Lemma A.2. It follows that for any given R, η, ϵ > 0 we can choose ρ and δ small enough so that

the results holds. □

Lemma A.4. Let s, t, s1, . . . , sN ∈ Rd−1 and write ΣN ∈ RN×N for the matrix given by ΣN := (Σ(sk, sj))k,j. Then, under
(A1)– (A4) we have

(a) m1/3
n Qn(fβn,s − fβn ) → 0,

(b) m1/3
n Qn

(
(fβn,s − fβn )(fβn,t − fβn )

)
→ Σ(s, t),

(c) (Wn(s1), . . . ,Wn(sN ))⊤ ⇝ N(0, ΣN ),

where N(0, ΣN ) denotes an RN -valued Gaussian random vector with mean 0 and covariance matrix ΣN and⇝ stands for weak
convergence.

Proof. (a) First note that for large enoughmn, by (21), we have

m1/3
n |βn,s − βn| ≤

⏐⏐⏐√m2/3
n − s2 − m1/3

n

⏐⏐⏐+ |s| ≤ 2|s|,

where the second inequality is true as b − a ≤
√
b2 − a2, when b ≥ a ≥ 0 and the fact that |Hns| = |s|. Moreover, we have

that |βn,s − βn| → 0 and mn → ∞. Now as βn is the maximizer of Γn, observe that by (18), we have

m1/3
n Qn(fβn,s − fβn ) = m1/3

n (Γn(βn,s) − Γn(βn))

= m1/3
n

[
∇Γn(βn)⊤(βn,s − βn) + O(|βn,s − βn|

2)
]

= O(m1/3
n |βn,s − βn|

2)
= O(|βn,s − βn|) = o(1).

(b) First note that (1U+β⊤
n X≥0 − 1/2)2 ≡ 1/4 and

(1β⊤
n,sx≥0 − 1β⊤

n x≥0)(1β⊤
n,t x≥0 − 1β⊤

n x≥0) = 1(β⊤
n,sx)∧(β⊤

n,t x)≥0>β⊤
n x + 1β⊤

n x≥0>(β⊤
n,sx)∨(β⊤

n,t x)
.

In view of these facts and condition (A4)–(ii), we have

m1/3
n Qn

(
(fβn,s − fβn )(fβn,t − fβn )

)
=m1/3

n P
(
(fβn,s − fβn )(fβn,t − fβn )

)
+ o(1)

=
m1/3

n

4
P
(
1(β⊤

n,sx)∧(β⊤
n,t x)≥0>β⊤

n x + 1β⊤
n x≥0>(β⊤

n,sx)∨(β⊤
n,t x)

)
+ o(1).

(24)

Now consider the transformations Tn : Rd
→ Rd given by Tn(x) := (H⊤

n x; β⊤
n x), where H⊤

n x ∈ Rd−1 and β⊤
n x ∈ R. Note that

Tn is an orthogonal transformation so det(Tn) = ±1 and for any ξ ∈ Rd−1 and η ∈ Rwe have T−1
n (ξ ; η) = Hnξ + ηβn. Under

this transformation, observe that

Cn,ξ :=
{
x ∈ Rd

: (β⊤

n,sx) ∧ (β⊤

n,tx) ≥ 0 > β⊤

n x
}

=

⎧⎨⎩(ξ ; η) ∈ Rd−1
× R : −m−1/3

n
s⊤ξ√

1 − m−2/3
n |s|2

∧
t⊤ξ√

1 − m−2/3
n |t|2

≤ η < 0

⎫⎬⎭ .
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Similarly, we have

Dn,ξ :=
{
x ∈ Rd

: β⊤

n x ≥ 0 > (β⊤

n,sx) ∧ (β⊤

n,tx)
}

=

{
(ξ ; η) ∈ Rd−1

× R : 0 ≤ η < −m−1/3
n

s⊤ξ√
1 − m−2/3

n |s|2
∨

t⊤ξ√
1 − m−2/3

n |t|2

}
.

Applying the above change of variable (x ↦→ Tn(x) ≡ (ξ ; η)) and Fubini’s theorem to (24), for all n large enough,

m1/3
n Qn

(
(fβn,s − fβn )(fβn,t − fβn )

)
= m1/3

n

∫∫ (
1Cn,ξ + 1Dn,ξ

)
p(Hnξ + ηβn) dηdξ .

With a further change of variable w = m1/3
n η and an application of the dominated convergence theorem we have

m1/3
n Qn

(
(fβn,s − fβn )(fβn,t − fβn )

)
→

1
4

∫
Rd−1

(
(s⊤ξ ∧ t⊤ξ )+ + (s⊤ξ ∨ t⊤ξ )−

)
p(Hξ ) dξ .

(c) Define ζn := (Wn(s1), . . . ,Wn(sN ))⊤, ζ̃n,k to be the N-dimensional random vector whose j-entry ism−1/3(fβn,sj
(Xn,k, Yn,k)−

fβn (Xn,k, Yn,k)), ζn,k := ζ̃n,k − E
(
ζ̃n,k
)
and

ρn,k,j := Qn

(
(fβn,sk

− fβn )(fβn,sj
− fβn )

)
− Qn

(
(fβn,sk

− fβn )
)
Qn

(
(fβn,sj

− fβn )
)

.

Wetherefore have ζn =
∑mn

k=1ζn,k andE
(
ζn,k
)

= 0.Moreover, (a) and (b) imply that
∑mn

k=1Var
(
ζn,k
)

=
∑mn

k=1E
(
ζn,kζ

⊤

n,k

)
→

ΣN . Now, take θ ∈ RN and define αn,k := θ⊤ζn,k. In the sequel we will denote by ∥ · ∥∞ the L∞-norm on RN . The previous
arguments imply that E

(
αn,k

)
= 0 and that s2n :=

∑mn
k=1Var

(
αn,k

)
=
∑mn

k=1θ
⊤Var

(
ζn,k
)
θ → θ⊤ΣNθ . Finally, note that for

all ϵ > 0,

1
sn

mn∑
l=1

E
(
α2
n,l1|αn,l|>ϵsn

)
≤
N2

∥θ∥
2
∞
m−2/3

n

sn

mn∑
l=1

Qn(|αn,l| > ϵsn)

≤
N2

∥θ∥
2
∞
m−2/3

n

s3nϵ2

∑
1≤k,j≤N

θkθjm1/3
n ρn,k,j → 0.

By the Lindeberg–Feller central limit theorem we can thus conclude that θ⊤ζn =
∑mn

j=1αn,j ⇝ N(0, θ⊤ΣNθ ). Since θ ∈ RN

was arbitrarily chosen, we can apply the Cramer–Wold device to conclude (c). □

Appendix B. The latent variable structure

In this section we discuss the latent variable structure of the binary response model and give some equivalent conditions
on its existence, that might be of independent interest. The median restrictionmed (U |X) = 0 on the unobserved variable U
implies that β⊤

0 x ≥ 0 if and only if κ(x) ≥ 1/2 for all x ∈ X; see Manski (1975). This condition can be re-written as

β⊤

0 x
(

κ(x) −
1
2

)
≥ 0

for all x ∈ X. Moreover, provided that the event [κ(X) ∈ {0, 1/2, 1}] has probability 0, the above condition is also sufficient
for the data to be represented with this latent variable structure. We make this statement precise in the following lemma.

Lemma B.1. Let X be an random vector taking values in X ⊂ Rd and let Y be a Bernoulli random variable defined on the same
probability space (Ω,A, P). Write κ(x) := E (Y |X = x). Then:

(i) If there are β0 ∈ Sd−1 and a random variable U such that med (U |X) = 0 and Y = 1U+β⊤
0 X≥0, then β⊤

0 x (κ(x) − 1/2) ≥ 0
for all x ∈ X.

(ii) Conversely, assume the event [κ(X) ∈ {0, 1/2, 1}] has probability 0 and that β⊤

0 x(κ(x) − 1/2) ≥ 0 for all x ∈ X◦. Then,
there is a probability measure µ on Rd+1 such that if (V ,U) ∼ µ, then V D

= X, med (U |V ) = 0 and (X, Y ) D
= (V ,W ),

where W = 1U+β⊤
0 V≥0 and D

= denotes equality in distribution.
(iii) Moreover, if (Ω,A, P) admits a continuous, symmetric random variable Z with a strictly increasing distribution function

that is independent of X, then V in (ii) can be taken to be identically equal to X.

Proof. The proof of (i) follows from the arguments preceding the lemma; also see Manski (1975). To prove (ii) consider
an X-valued random vector V with the same distribution as X and an independent random variable Z with a continuous,
symmetric and strictly increasing distribution function Ψ . Define

U :=
β⊤

0 V
Ψ −1 (κ(V ))

Z 1κ(V )̸∈{0,1/2,1}
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and let µ to be the distribution of (V ,U). Then, lettingW = 1U+β⊤
0 V≥0, for all v with probability (w.p.) 1,

P(W = 1|V = v) = P(U ≥ −β⊤

0 v|V = v) = P(Z ≤ Ψ −1 (κ(v)) |V = v) = κ(v),

where we have used the fact that β⊤

0 V/Ψ −1 (κ(V )) > 0 w.p. 1 (since β⊤

0 x(κ(x)− 1/2) ≥ 0 is equivalent to β⊤

0 x Ψ −1(κ(x)) ≥

0). Thus (ii) follows. Under the assumptions of (iii) note that we can take V to be identically equal to X in the above argument
and result follows. □
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