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Abstract

Inference procedures based on the Hellinger distance provide attractive al-
ternatives to likelihood based methods for the statistician. The minimum
Hellinger distance estimator has full asymptotic efficiency under the model
together with strong robustness properties under model misspecification.
However, the Hellinger distance puts too large a weight on the inliers which
appears to be the main reason for the poor efficiency of the method in small
samples. Here some modifications to the inlier part of the Hellinger distance
are provided which lead to substantial improvements in the small sample
properties of the estimators. The modified divergences are members of the
general class of disparities and satisfy the necessary regularity conditions so
that the asymptotic properties of the resulting estimators follow from stan-
dard theory. In limited simulations the proposed estimators exhibit better
small sample performance at the model and competitive robustness proper-
ties in relation to the ordinary minimum Hellinger distance estimator. As
the asymptotic efficiencies of the modified estimators are the same as that of
the ordinary estimator, the new procedures are expected to be useful tools
for applied statisticians and data analysts.

AMS (2000) subject classification. Primary To be filled.
Keywords and phrases. Hellinger distance, inliers, inlier modified Hellinger
distance, asymptotic distribution.

1 Introduction

In recent times, density based divergences have been studied in the con-
text of discrete models by Cressie and Read (1984) and Lindsay (1994).
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Pardo (2006) provides a good general reference for results relating to density
based divergences in discrete models. The maximum likelihood estimator is
known to be fully asymptotically efficient under standard regularity condi-
tions, but has very poor robustness properties. On the other hand classical
robust estimators – based on M-estimation and its extensions – usually sac-
rifice first order efficiency at the model to achieve their robustness (see, eg.
Hampel et al. 1986). Estimators which combine full asymptotic efficiency
at the model with strong stability properties can have great practical value.

Some density-based minimum distance estimators have been shown to
attain first-order efficiency at the model together with strong robustness
properties. Within the class of minimum divergence procedures, the meth-
ods based on the minimum Hellinger distance stand out in terms of their
popularity and often represent the standard against which other minimum
divergence procedures are judged. Beran (1977) and Simpson (1987, 1989)
have provided much of the basic background and properties of minimum
Hellinger distance inference. Lindsay (1994) has considered a larger class of
divergences, called disparities, which includes the Hellinger distance; Lind-
say has also provided general conditions under which the minimum disparity
estimators have full asymptotic efficiency at the model.

The popularity of the minimum Hellinger distance procedures are par-
tially tempered by the relatively poor efficiency of these methods compared
to the likelihood based methods in small samples. It appears that the di-
minished small sample efficiency is due to the large weight attached to the
“inliers” (discussed in the next section) by the Hellinger distance. Our aim
in this paper is to modify the Hellinger distance in such a manner that the
small sample efficiency of the resulting estimator is improved while the ro-
bustness properties remain intact. Among others, the minimum penalized
Hellinger distance estimator (Harris and Basu, 1994; Basu and Basu, 1998)
and the minimum combined distance estimators (Park et al., 1995) have also
been shown to provide reasonable solutions to the inlier problem. However,
the modifications made in these cases result in divergences which do not
satisfy the defining conditions of a disparity, and the general approach of
Lindsay (1994) is no longer directly applicable in determining the asymp-
totic properties of these estimators. The asymptotic distributions of the
minimum penalized Hellinger distance estimator and minimum combined
disparity estimator are yet to be theoretically established in the literature.

In this paper, we will discuss the suggested modification of the Hellinger
distance in connection with discrete models only. The method is applicable
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to the continuous case in principle, but requires additional accessories such
as kernel density estimation or other nonparametric smoothing techniques.
We will consider such models in a sequel paper.

2 The Class of Disparities and the Hellinger Distance

Let X1, . . . ,Xn be independent and identically distributed (i.i.d.) ran-
dom variables from the distribution with probability mass function (p.m.f.)
f(x) with x ∈ X . Consider a discrete parametric model with p.m.f. mθ(x)
where
θ = (θ1, θ2, . . . , θp)

T ∈ Θ ⊂ R
p, and which will be expected to model the

data. Here the true data generating p.m.f. f may or may not be a member
of the family {mθ : θ ∈ Θ}.

For any x ∈ X , suppose dn(x) be the proportion of sample observations
at x. The Pearson residual function δn(x) at x is defined as

δn(x) =
[dn(x) − mθ(x)]

mθ(x)
. (2.1)

We will drop the subscript n from δn(x) and dn(x) whenever there is no
scope of confusion. Suppose that G(·) is a real-valued, thrice-differentiable,
strictly convex function on [−1,∞), with G(0) = 0. We will consider density
based divergences, called disparities, generated by the function G which are
denoted by ρG(d,mθ) and defined as

ρG(d,mθ) =
∑

x∈X

G(δ(x))mθ(x) . (2.2)

There are several important subfamilies of the class of disparities which
include the Cressie-Read (1984) family of power divergences, indexed by a
parameter λ ∈ R, having the form

Iλ(d,mθ) =
1

λ(λ + 1)

∑

x

d(x)

{

(

d(x)

mθ(x)

)λ

− 1

}

=
∑

x

[

(δ(x) + 1)λ+1 − (δ(x) + 1)

λ(λ + 1)
− δ(x)

λ + 1

]

mθ(x). (2.3)

The disparities for the cases λ = 0 and λ = −1 are defined by the contin-
uous limits of the above expressions as λ → 0 and λ → −1 respectively. The
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likelihood disparity is generated by λ = 0 which is minimized by maximum
likelihood estimator. The likelihood disparity has the form

LD(d,mθ) =
∑

x

[d(x) log(d(x)/mθ(x)) + (mθ(x) − d(x))].

The graphs of the G(·) functions for several members of the power divergence
family are presented in Figure 1. Notice that the flatter the graphs are to
the right of the point δ = 0, the more sharply they rise on the left.

Figure 1: Plots of the G(δ) function for several members of the power divergence
family corresponding to λ = −1,− 1
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The minimum disparity estimator θ̂n corresponding ρG is defined to be
the value of θ which minimizes ρG over θ ∈ Θ. Thus

ρG(d,mθ̂n

) = min
θ∈Θ

ρG(d,mθ).

Under differentiability of the model this is equivalent to solving the estimat-
ing equation

−∇ρG(d,mθ) =
∑

x

[

G′(δ(x))
d(x)

mθ(x)
− G(δ(x))

]

∇mθ(x) = 0, (2.4)

where ∇ denotes the gradient with respect to θ and G′ is the first derivative
of G. The estimating equation can be written as

∑

x

A(δ(x))∇mθ(x) = 0 , where A(δ) = (δ + 1)G′(δ) − G(δ). (2.5)



4 Rohit Kumar Patra, Abhijit Mandal and Ayanendranath Basu

The function A(δ) is called the residual adjustment function (RAF) of the
disparity. It is strictly increasing on [−1,∞), and can be redefined to satisfy
A(0) = 0 and A′(0) = 1 without changing the estimating properties of the
disparity. This is achieved if the corresponding G functions is standardized
so that G′(0) = 0 and G′′(0) = 1. The residual adjustment functions of
several members of the power divergence family are presented in Figure 2.

Figure 2: Plots of the RAF A(δ) for several members of the power divergence
family corresponding to λ = −1, − 1
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To analyze the robustness properties of the minimum disparity estima-
tors, one has to characterize the outliers probabilistically. If an observation
x in the sample space is associated with a large positive value of δ(x), it will
be called an outlier in the sense that the actual observed proportion at x is
much larger than what is predicted by the model. For robust estimation, one
should choose such disparities which give very small weights to the observa-
tions having large positive values of δ; for such cases, the RAF A(δ) would
exhibit a severely dampened response to increasing δ. For a qualitative de-
scription, one can take the RAF of the likelihood disparity ALD(δ) as the
basis for comparison. For this disparity GLD(δ) = (δ + 1) log(δ + 1) − δ and
ALD(δ) = δ, and thus to compare the other minimum disparity estimators
with the maximum likelihood estimator, one must focus on how their RAFs
depart from linearity for large positive δ. The RAFs for the disparities with
large negative λ are expected to perform better in terms of robustness; how-
ever, in these cases the functions curve sharply down on the right hand side
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of the δ axis. We will refer to the curves (of the G function as well as the A
function) on the right hand side of the point δ = 0 as the outlier part of the
function, while the corresponding left hand side will be referred to as the
“inlier” part.

Inliers, corresponding to negative values of δ, are those points which
have less data than expected under the model. Unfortunately, the minimum
disparity estimators which have better stability properties under the presence
of outliers are often highly sensitive to inliers. Figure 2 demonstrates that
the residual adjustment functions corresponding to large negative values of λ
are quite flat on the outlier part, but rise steeply in the inlier part. Empirical
studies have shown that this often leads to a substantial deficiency in the
small sample performance of the estimators at the model; this is unfortunate,
since these estimators are otherwise desirable in terms of their robustness
properties. See Lindsay (1994) and Basu and Basu (1998) for a more detailed
discussion of the inlier problem.

In this paper, we will attempt to provide one solution to the inlier prob-
lem without jeopardizing the asymptotic efficiency or the robustness prop-
erties of the corresponding estimators. To keep the presentation short and
focused, we will illustrate our proposal thorough the Hellinger distance (a
member of the power divergence family corresponding to λ = −1/2). In gen-
eral such modifications will be useful for all disparities which are sensitive
to “inliers”.

The (twice, squared) Hellinger distance between d and mθ is defined as

HD(d,mθ) = 2
∑

x

(d1/2(x) − m
1/2

θ (x))2, (2.6)

and the corresponding G and A functions are given as

GHD(δ) = 2(
√

δ + 1 − 1)2, AHD(δ) = 2(
√

δ + 1 − 1).

The plots of the GHD(·) and AHD(·) functions are provided in Figures 1 and
2 corresponding to λ = −1/2.

3 The Inlier Modified Hellinger Distance

We have observed that the GHD(·) and the AHD(·) functions are quite
sensitive to inliers. In order to reduce this sensitivity, we propose to shrink
GHD(δ) towards zero for negative values of δ; however, while doing this mod-
ification we keep the outlier part of the function intact, and also ensure that
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the resulting A(δ) function is continuously differentiable up to the second
order at δ = 0.

Letting IMHD stand for “Inlier Modified Hellinger Distance”, we define
the function

Gγ
IMHD

(δ) =







GHD(δ)

(1 + δ2)γ
, δ ≤ 0, γ ≥ 0,

GHD(δ), δ > 0,
(3.1)

which will be used to generate the family of inlier modified Hellinger dis-
tances; IMHDγ will represent the disparity within this family indexed by
the tuning parameter γ. Note that γ = 0 leads to no shrinkage and recovers
the original Hellinger distance, while the amount of shrinkage increases with

increasing γ. It can be easily verified that Gγ′′′

IMHD
(δ), the third derivative of

the function Gγ
IMHD

(δ), is continuous at δ = 0 (and hence the corresponding

second derivative Aγ′′

IMHD
(δ) of the residual adjustment function is continu-

ous at δ = 0). This is true more generally if the denominator of the inlier
part of the function defined in (3.1) is replaced by (1+ δ2P (δ))γ where P (δ)
is a polynomial in δ. This would not be the case, for example, if the denomi-
nator of the inlier part is replaced by (1+ δP (δ))γ instead. Since the second
derivative of the residual adjustment function – also called the estimation
curvature of the disparity – is a core component in the theoretical develop-
ment of the asymptotic properties of the minimum disparity estimators, it
is important to control it appropriately. The estimation curvature is an use-
ful indicator of the second order efficiency and the robustness of minimum
disparity estimators, and Lindsay’s (1994) proof of the asymptotic distribu-
tion of the minimum disparity estimator depends critically on, among other
things, the boundedness of A′′(δ)(1+ δ). When this condition is violated, as
in the case of minimum combined disparity estimators (Park et al. 1995),
the asymptotic distribution no longer follows automatically from the results
of Lindsay.

Among specific members of the IMHD family, we will focus, in particular,
on the IMHD1 and IMHD0.5 measures. The IMHD1 measure shrinks the
original G(·) function in such a way that it becomes identical to that of GLD

at δ = −1. The G function for the measure IMHD0.5 has a somewhat better
correspondence with GLD over a larger range of the inlier part, although
it exhibits a relatively sharper dip near the left boundary. The IMHD0.5

measure is also intuitive in that its denominator (1 + δ2)1/2 is of the order
O(δ) which is of the same order as the numerator, and hence has the same
scale factor.



Min. Hellinger distance estimation with inlier modification 7

Figure 3: Comparison plots of G(δ) vs δ for for MIMHDE1,MIMHDE0.5 and
MHDE
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Figure 4: Comparison plots of A(δ) vs δ for for MIMHDE1,MIMHDE0.5 and MHDE
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It is not easy to analytically show that the function Gγ
IMHD

(δ) is convex
on [−1,∞); however, direct evaluation shows that this is indeed the case, at
least for γ ∈ [0, 1] . In Figures 3 and 4 we have presented the plots of G0.5

IMHD
,

G1
IMHD

and A0.5
IMHD

, A1
IMHD

functions, together with the corresponding curves



8 Rohit Kumar Patra, Abhijit Mandal and Ayanendranath Basu

for the likelihood disparity and the ordinary Hellinger distance. The reduced
sensitivity of the IMHDγ curves in the inlier side for γ > 0 is clearly apparent.

We denote the minimizer of IMHDγ as the minimum inlier modified
Hellinger distance estimator at γ (MIMHDEγ). The Gγ

IMHD
(δ) function

satisfies all the conditions of Lindsay (1994) for γ ∈ [0, 1] (and possibly
beyond); from Theorem 33 of the above paper it follows that for each γ ∈
[0, 1], the MIMHDEγ is asymptotically efficient at the model with the same
asymptotic distribution as the MLE or the MHDE.

Since Gγ
IMHD

(−1) and Gγ′

IMHD
(∞) are finite for all γ > 0, the MIMHDEγ

inherits the asymptotic breakdown properties described in Theorem 4.1 of
Park and Basu (2004). In particular, it enjoys 50% breakdown at the model
under the conditions of the above theorem.

Figure 5: Plot of n×MSE in 1000 replications for data generated from the
Poisson(5) distribution.
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4 Simulations

In this section we present the results of a small simulation experiment to
illustrate the performance of MIMHDE1 and MIMHDE0.5 under the Poisson
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model. For the purpose of comparison we also present the corresponding
results for three other estimators; (i) the maximum likelihood estimator
(MLE); (ii) the ordinary minimum Hellinger distance estimator (MHDE),
and (iii) the minimum combined disparity estimator (MCDE) which uses
the LD for δ ≤ 0 and HD for δ > 0. The last estimator would be the
ideal one for our purpose, if not for the fact that its asymptotic distribution
does not follow from the established results and the second derivative of its
residual adjustment function at δ = 0 is undefined.

Samples of size n were generated randomly from a Poisson distribution
with mean parameter θ = 5 for several different values of n. All the five
different estimators of θ were computed for each sample, and the mean square
error of the estimates were evaluated at each sample size around the true
value of 5 using 1000 replications. The plot of the mean square errors (times
n) are presented in Figure 5 for values of n between 10 and 300. It is
clearly observed that the MCDE and the inlier modified estimators have a
much improved performance, and are quite competitive with the MLE even
in very small samples. However the mean square error plot of the MHDE
appears to be well above the other four plots. Clearly, the MHDE has a much
inferior performance in small samples, and is substantially poorer than the
other estimators even at a sample size of 300. The performance of the three
estimators, MCDE, MIMHDE0.5 and MIMHDE1 are so close that for any
practical purpose there is nothing to choose between them in this case.

To compare the robustness of the estimators, we next generated data
from the 0.99Poisson(5)+0.01Poisson(20) mixture and calculated our five
estimators as in the previous case assuming a Poisson model. The mean
square error of each estimator is calculated against the target value of 5 in
1000 replications and (n times) the MSE curves are presented as a function of
the sample size n in Figure 6. The MLE is strongly affected by the presence
of the contaminating component, but it is clear that the inlier modification
has not compromised the robustness of our proposed estimators in this case,
which are extremely competitive or better than the MCDE and the ordinary
MHDE.

5 Concluding Remarks

In this paper we have proposed a modification to the Hellinger distance
to increase its small sample efficiency. Several members of the corresponding
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Figure 6: Plot of the n×MSE for contaminated Poisson data
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family of estimators appear to remove some of the deficiencies of the mini-
mum Hellinger distance estimator without compromising its robustness.

For the data analyst and the statistician, it will be useful if we can make
an empirical recommendation on which of the methods to choose in a prac-
tical situation based on our simulations. It is well known – and clear in our
numerical investigation – that the performance of the MLE takes a major
hit under data contamination. On the other hand, the performance of the
ordinary minimum Hellinger distance estimator is substantially worse un-
der pure data compared to the other four estimators. The three estimators
that perform reasonably in all the situations considered here are the MCDE,
MIMHDE0.5 and MIMHDE1. These three estimators are so close in perfor-
mance in all the situations we looked at that it is not possible to separate
them in terms of their performance alone. Given that the asymptotics for
the MCDE is not yet well developed, and that the MIMHDE1 uses a dif-
ferent scale factor in the denominator of (3.1), our preference will be for
MIMHDE0.5. We hope that more extensive future studies will shed more
light on the hierarchy between these estimators in different situations.

The idea of dividing G(δ) by (1+δ2P (δ))γ where P (δ) is a polynomial in
δ will also require further follow up to determine the effects of the additional
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terms. Further modifications of this denominator term to increase the degree
of smoothness of the G(δ) curve at δ = 0, which has both theoretical and
numerical implications, may also be looked into in the future.
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