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Summary. We consider a two-component mixture model with one known component. We
develop methods for estimating the mixing proportion and the unknown distribution non-
parametrically, given independent and identically distributed data from the mixture model, using
ideas from shape-restricted function estimation.We establish the consistency of our estimators.
We find the rate of convergence and asymptotic limit of the estimator for the mixing proportion.
Completely automated distribution-free honest finite sample lower confidence bounds are de-
veloped for the mixing proportion. Connection to the problem of multiple testing is discussed.
The identifiability of the model and the estimation of the density of the unknown distribution are
also addressed. We compare the estimators proposed, which are easily implementable, with
some of the existing procedures through simulation studies and analyse two data sets: one
arising from an application in astronomy and the other from a microarray experiment.
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1. Introduction

Consider a mixture model with two components, i.e.

F.x/=αFs.x/+ .1−α/Fb.x/, .1/

where the cumulative distribution function (CDF) Fb is known, but the mixing proportion
α ∈ [0, 1] and the CDF Fs (�= Fb) are unknown. Given a random sample from F , we wish to
estimate (non-parametrically) Fs and the parameter α.

This model appears in many contexts. In multiple-testing problems (microarray analysis,
neuroimaging) the p-values, obtained from the numerous (independent) hypotheses tests, are
uniformly distributed on [0,1], under hypothesis H0, whereas their distribution associated with
H1 is unknown; see, for example, Efron (2010) and Robin et al. (2007). Translated to the setting
of model (1), Fb is the uniform distribution and the goal is to estimate the proportion of false null
hypotheses α and the distribution of the p-values under the alternative. In addition, a reliable
estimator of α is important when we want to assess or control multiple error rates, such as the
false discovery rate of Benjamini and Hochberg (1995).

In contamination problems, the distribution Fb, for which reasonable assumptions can be
made, may be contaminated by an arbitrary distribution Fs, yielding a sample drawn from
F as in model (1); see, for example, McLachlan and Peel (2000). For example, in astronomy,
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such situations arise quite often: when observing some variable(s) of interest (e.g. metallicity
and radial velocity) of stars in a distant galaxy, foreground stars from the Milky Way, in the
field of view, contaminate the sample; the galaxy (‘signal’) stars can be difficult to distinguish
from the foreground stars as we can only observe the stereographic projections and not the
three-dimensional position of the stars (see Walker et al. (2009)). Known physical models for
the foreground stars help us to constrain Fb, and the focus is on estimating the distribution of
the variable for the signal stars, i.e. Fs. We discuss such an application in more detail in Section
9.2. Such problems also arise in high energy physics where often the signature of new physics is
evidence of a significant looking peak at some position on top of quite a smooth background
distribution; see, for example, Lyons (2008).

Most of the previous work on this problem assumes some constraint on the form of the
unknown distribution Fs; for example, it is commonly assumed that the distributions belong
to certain parametric models, which lead to techniques based on maximum likelihood (see,
for example, Cohen (1967) and Lindsay (1983)), minimum χ2 (see, for example, Day (1969))
the method of moments (see, for example, Lindsay and Basak (1993)) and moment-generating
functions (see, for example, Quandt and Ramsey (1978)). Bordes et al. (2006) assumed that both
the components belong to an unknown symmetric location–shift family. Jin (2008) and Cai and
Jin (2010) used empirical characteristic functions to estimate Fs under a semiparametric normal
mixture model. In multiple testing, this problem has been addressed by various researchers
and different estimators and confidence bounds for α have been proposed in the literature
under certain assumptions on Fs and its density; see for example, Storey (2002), Genovese and
Wasserman (2004), Meinshausen and Rice (2006), Meinshausen and Bühlmann (2005), Celisse
and Robin (2010) and Langaas et al. (2005). For brevity, we do not discuss these references here
but come back to this application in Section 7.

In this paper we provide a methodology to estimate α and Fs (non-parametrically), with-
out assuming any constraint on the form of Fs. The main contributions of our paper can be
summarized as follows.

(a) We investigate the identifiability of model (1) in complete generality.
(b) When F is a continuous CDF, we develop an honest finite sample lower confidence

bound for the mixing proportion α. We believe that this is the first attempt to construct
a distribution-free lower confidence bound for α that is also tuning parameter free.

(c) Two estimators of α are proposed and studied. We derive the rate of convergence and
asymptotic limit for one of the estimators proposed.

(d) A non-parametric estimator of Fs by using ideas from shape-restricted function estimation
is proposed and its consistency is proved. Further, if Fs has a non-increasing density fs,
we can also consistently estimate fs.

The paper is organized as follows. In Section 2 we address the identifiability of the model
given in expression (1). In Section 3 we propose an estimator of α and investigate its theoretical
properties, including its consistency, rate of convergence and asymptotic limit. In Section 4 we
develop a completely automated distribution-free honest finite sample lower confidence bound
for α. As the performance of the estimator proposed in Section 3 depends on the choice of a
tuning parameter, in Section 5 we study a tuning-parameter-free heuristic estimator of α. We
discuss the estimation of Fs and its density fs in Section 6. Connection to the multiple-testing
problem is developed in Section 7. In Section 8 we compare the finite sample performance of
our procedures, including a plug-in and cross-validated choice of the tuning parameter for the
estimator that is proposed in Section 3, with other methods that are available in the literature
through simulation studies, and we provide a clear recommendation to the practitioner. Two
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real data examples, one arising in astronomy and the other from a microarray experiment, are
analysed in Section 9. Appendix A gives the proofs of some of the main results in the paper. The
proofs of the results that are not given in Appendix A can be found in section 15 of the on-line
supplementary material.

2. The model and identifiability

2.1. When α is known
Suppose that we observe an independent and identically distributed sample X1, X2, : : : , Xn from
F as in model (1). If α∈ .0, 1] were known, a naive estimator of Fs would be

F̂
α
s,n = Fn − .1−α/Fb

α
, .2/

where Fn is the empirical CDF of the observed sample, i.e. Fn.x/=Σn
i=11{Xi �x}=n. Although

this estimator is consistent, it does not satisfy the basic requirements of a CDF: F̂
α
s,n need not

be non-decreasing or lie between 0 and 1. This naive estimator can be improved by imposing
the known shape constraint of monotonicity. This can be accomplished by minimizing∫

{W.x/− F̂
α
s,n.x/}2 dFn.x/≡ 1

n

n∑
i=1

{W.Xi/− F̂
α
s,n.Xi/}2 .3/

over all CDFs W . Let F̌α
s,n be a CDF that minimizes expression (3). The above optimization

problem is the same as minimizing ‖θ−V‖2 over θ= .θ1, : : : , θn/∈Θinc where

Θinc ={θ∈Rn : 0�θ1 �θ2 �: : :�θn �1},

V= .V1, V2, : : : , Vn/, Vi := F̂
α
s,n.X.i//, i=1, 2, : : : , n, X.i/ being the ith order statistic of the sample,

and ‖ · ‖ denotes the usual Euclidean norm in Rn. The estimator θ̂ is uniquely defined by the
projection theorem (see, for example, proposition 2.2.1 on page 88 of Bertsekas (2003)); it is the
Euclidean projection of V on the closed convex set Θinc ⊂Rn. θ̂ is related to F̌α

s,n via F̌α
s,n.X.i//= θ̂i

and can be easily computed by using the pool adjacent violators algorithm; see section 1.2 of
Robertson et al. (1988). Thus, F̌α

s,n is uniquely defined at the data points Xi, for all i=1, : : : , n,
and can be defined on the entire real line by extending it to a piecewise constant right continuous
function with possible jumps only at the data points. The following result, which is derived easily
from chapter 1 of Robertson et al. (1988), characterizes F̌α

s,n.

Lemma 1. Let F̃
α
s,n be the isotonic regression (see for example, page 4 of Robertson et al.

(1988)) of the set of points {F̂
α
s,n.X.i//}n

i=1. Then F̃
α
s,n is characterized as the right-hand slope

of the greatest convex minorant of the set of points {i=n, Σi
j=0 F̂

α
s,n.X.j//}n

i=0. The restriction
of F̃

α
s,n to [0, 1], i.e. F̌α

s,n =min{max{F̃
α
s,n, 0}, 1}, minimizes expression (3) over all CDFs.

Isotonic regression and the pool adjacent violators algorithm have been very well studied in
the statistical literature with many textbook length treatments; see, for example, Robertson et al.
(1988) and Barlow et al. (1972). If skilfully implemented, the pool adjacent violators algorithm
has a computational complexity of O.n/ (see Grotzinger and Witzgall (1984)).

2.2. Identifiability of Fs
When α is unknown, the problem is considerably more difficult; in fact, it is non-identifiable. If
model (1) holds for some Fb and α then the mixture model can be rewritten as
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F = .α+γ/

(
α

α+γ
Fs + γ

α+γ
Fb

)
+ .1−α−γ/Fb,

for 0 � γ � 1 −α, and the term .αFs + γFb/=.α+γ/ can be thought of as the non-parametric
component. A trivial solution occurs when we take α+ γ = 1, in which case expression (3) is
minimized when W = Fn. Hence, α is not uniquely defined. To handle the identifiability issue,
we redefine the mixing proportion as

α0 := inf{γ ∈ .0, 1] :{F − .1−γ/Fb}=γ is a CDF}: .4/

Intuitively, this definition makes sure that the ‘signal’ distribution Fs does not include any
contribution from the known background Fb.

In this paper we consider the estimation of α0 as defined in expression (4). Identifiability of
mixture models has been discussed in many references, but generally with parametric assump-
tions on the model. Genovese and Wasserman (2004) discussed identifiability when Fb is the
uniform distribution and F has a density. Hunter et al. (2007) and Bordes et al. (2006) discussed
identifiability for location–shift mixtures of symmetric distributions. Most researchers try to
find conditions for the identifiability of their model, whereas we go a step further and quantify
the non-identifiability by calculating α0 and investigating the difference between α and α0. In
fact, most of our results are valid even when model (1) is non-identifiable.

Suppose that we start with a fixed Fs, Fb and α satisfying model (1). As seen from the above
discussion we can only hope to estimate α0, which, from its definition in expression (4), is
smaller than α, i.e. α0 �α. A natural question that arises now is: under what condition(s) can
we guarantee that the problem is identifiable, i.e. α0 =α? The following lemma, which is proved
in Appendix A, gives the connection between α and α0.

Lemma 2. Let F be as in model (1) and α0 as defined in expression (4). Then

α0 =α− sup{0� ε�1 :αFs − εFb is a sub-CDF}, .5/

where sub-CDF is a non-decreasing right continuous function taking values between 0 and
1. In particular, α0 <α if and only if there exists ε∈ .0, 1/ such that αFs − εFb is a sub-CDF.
Furthermore, α0 =0 if and only if F =Fb:

In what follows we separately identify α0 for any distribution, be it continuous or discrete
or a mixture of the two, with a series of lemmas proved in the on-line supplementary material.
By an application of the Lebesgue decomposition theorem in conjunction with the Jordan
decomposition theorem (see page 142, chapter V, section 3aÅ of Feller (1971)), we have that
any CDF G can be uniquely represented as a weighted sum of a piecewise constant CDF
G.d/, an absolutely continuous CDF G.a/ and a continuous but singular CDF G.s/, i.e. G =
η1G.a/ + η2G.d/ + η3G.s/, where ηi � 0, for i = 1, 2, 3, and η1 + η2 + η3 = 1. However, from a
practical point of view, we can assume that η3 =0, since singular functions almost never occur
in practice; see, for example, Parzen (1960). Hence, we may assume that

G=ηG.a/ + .1−η/G.d/, .6/

where 1 − η is the sum total of all the point masses of G. Let d.G/ denote the set of all jump
discontinuities of G, i.e. d.G/ = {x ∈ R : G.x/ − G.x−/ > 0}. Let us define JG : d.G/ → [0, 1] to
be a function that is defined only on the jump points of G such that JG.x/=G.x/−G.x−/ for
all x ∈ d.G/. The following result addresses the identifiability issue when both Fs and Fb are
discrete CDFs.

Lemma 3. Let Fs and Fb be discrete CDFs. If d.Fb/ �⊂ d.Fs/, then α0 =α, i.e. model (1) is
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identifiable. If d.Fb/ ⊂ d.Fs/, then α0 =α{1 − infx∈d.Fb/ JFs.x/=JFb.x/}: Thus, α0 =α if and
only if infx∈d.Fb/JFs.x/=JFb.x/=0:

Next, let us assume that both Fs and Fb are absolutely continuous CDFs.

Lemma 4. Suppose that Fs and Fb are absolutely continuous, i.e. they have densities fs and
fb respectively. Then

α0 =α

(
1− ess inf

fs

fb

)
,

where, for any function g, ess infg = sup{a∈R : m{{x :g.x/<a}}=0}, m being the Lebesgue
measure. As a consequence, α0 <α if and only if there exists c> 0 such that fs � cfb, almost
everywhere m.

Lemma 4 states that if there does not exist any c>0 for which fs.x/�cfb.x/, for almost every
x, then α0 =α and we can estimate the mixing proportion correctly. Note that, in particular, if
the support of Fs is strictly contained in that of Fb, then the problem is identifiable and we can
estimate α.

In section 12 of the on-line supplementary material we apply lemmas 3 and 4 to two discrete
(Poisson and binomial) distributions and two absolutely continuous (exponential and normal)
distributions to obtain the exact relationship between α and α0. In the following lemma, which
is proved in greater generality in section 12 of the on-line supplementary material, we give con-
ditions under which a general CDF F , that can be represented as in equation (6), is identifiable.

Lemma 5. Suppose that F =κF.a/ + .1−κ/F.d/, where F.a/ is an absolutely continuous CDF
and F.d/ is a piecewise constant CDF, for some κ∈ .0, 1/. Then model (1) is identifiable, if
either F.a/ or F.d/ are identifiable.

3. Estimation

3.1. Estimation of the mixing proportion α0
In this section we consider the estimation of α0 as defined in equation (5). For the rest of the
paper, unless otherwise noted, we assume that

X1, X2, : : : , Xn is an independent and identically distributed sample from F as in model (1):

Recall the definitions of F̂
γ
s,n and F̌

γ
s,n, for γ ∈ .0, 1]; see expressions (2) and (3). When γ =1,

we have F̂
γ
s,n =Fn = F̌

γ
s,n as F̂

γ
s,n (for γ =1) is a CDF, whereas, when γ is much smaller than α0,

the regularization of F̂
γ
s,n modifies it, and thus F̂

γ
s,n and F̌

γ
s,n are quite different. We would like

to compare the naive and isotonized estimators F̂
γ
s,n and F̌

γ
s,n respectively, and to choose the

smallest γ for which their distance is still small. This leads to the following estimator of α0:

α̂cn

0 = inf
{

γ ∈ .0, 1] :γ dn.F̂
γ
s,n, F̌γ

s,n/� cn√
n

}
, .7/

where cn is a sequence of constants and dn stands for the L2.Fn/ distance, i.e., if g, h : R→R are
two functions, then d2

n.g, h/=∫ {g.x/−h.x/}2dFn.x/: It is easy to see that

dn{Fn, γF̌γ
s,n + .1−γ/Fb}=γ dn.F̂

γ
s,n, F̌γ

s,n/: .8/

For simplicity of notation, using equation (8), we define γ dn.F̂
γ
s,n, F̌

γ
s,n/ for γ =0 as

lim
γ→0+

γ dn.F̂
γ
s,n, F̌γ

s,n/=dn.Fn, Fb/: .9/
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This convention is followed in the rest of the paper.
The choice of cn is important, and in the following sections we address this issue in detail.

We derive conditions on cn that lead to consistent estimators of α0. We shall also show that
particular (distribution-free) choices of cn will lead to honest lower confidence bounds for
α0.

Next, we prove a result which implies that, in the multiple-testing problem, estimators of α0 do
not depend on whether we use p-values or z-values to perform our analysis. Let Ψ : R→R be a
known continuous non-decreasing function. We define Ψ−1.y/ := inf{t ∈R :y�Ψ.t/}, and Yi :=
Ψ−1.Xi/: It is easy to see that Y1, Y2, : : : , Yn is an independent and identically distributed sample
from G :=αFs ◦Ψ+ .1 −α/Fb ◦Ψ: Suppose now that we work with Y1, Y2, : : : , Yn, instead of
X1, X2, : : : , Xn, and want to estimate α. We can define αY

0 as in equation (4) but with {G, Fb ◦Ψ}
instead of {F , Fb}. The following result, which is proved in the on-line supplementary material,
shows that the α0 and its estimators, proposed in this paper, are invariant under such monotonic
transformations.

Theorem 1. Let Gn be the empirical CDF of Y1, Y2, : : : , Yn. Also, let Ĝs,n and Ǧ
γ
s,n be as

defined in expressions (2) and (3) respectively, but with {Gn, Fb ◦ Ψ} instead of {Fn, Fb}.
Then α0 =αY

0 and γ dn.F̂
γ
s,n, F̌

γ
s,n/=γ dn.Ĝ

γ
s,n, Ǧ

γ
s,n/ for all γ ∈ .0, 1].

3.2. Consistency of α̂cn
0

We start with two elementary results, which are proved in Appendix A, on the behaviour of our
criterion function γ dn.F̌

γ
s,n, F̂

γ
s,n/.

Lemma 6. For 1�γ �α0, γ dn.F̌
γ
s,n, F̂

γ
s,n/�dn.F , Fn/: Thus,

γ dn.F̂
γ
s,n, F̌γ

s,n/→
{

0, γ −α0 �0,
> 0, γ −α0 < 0,

.10/

almost surely.

Lemma 7. The set An :={γ ∈ [0, 1] :
√

nγ dn.F̂
γ
s,n, F̌

γ
s,n/� cn} is convex. Thus, An = [α̂cn

0 , 1]:

The following result, which is proved in the on-line supplementary material, shows that, for
a broad range of choices of cn, our estimation procedure is consistent.

Theorem 2. If cn =o.
√

n/ and cn →∞, then α̂cn

0 →Pα0.

A proper choice of cn is important and crucial for the performance of α̂cn

0 . We suggest doing
cross-validation to find the optimal tuning parameter cn. In Section 8.2.1 we detail this approach
and illustrate its good finite sample performance through simulation examples; see Tables 2–5,
Section 8.2.4, and section 13 (in the on-line supplementary material). However, cross-validation
can be computationally expensive. Another useful choice for cn is to take cn =0:1log{log.n/}:

After extensive simulations, we observe that cn =0:1log{log.n/} has good finite sample perfor-
mance for estimating α0; see Section 8 and section 13 of the on-line supplementary material for
more details.

3.3. Rate of convergence and asymptotic limit
We first discuss the case α0 =0. In this situation, under minimal assumptions, we show that, as
the sample size grows, α̂cn

0 exactly equals α0 with probability converging to 1.

Lemma 8. When α0 =0, if cn →∞ as n→∞, then P.α̂cn

0 =0/→1:
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For the rest of this section we assume that α0 > 0. The following theorem gives the rate of
convergence of α̂cn

0 .

Theorem 3. Let rn :=√
n=cn. If cn →∞ and cn =o.n1=4/ as n→∞, then rn.α̂cn

0 −α0/=OP.1/:

The proof of this result is involved and we give the details in section 15.5 of the on-line
supplementary material.

Remark 1. Genovese and Wasserman (2004) showed that the estimators of α0 that were
proposed by Hengartner and Stark (1995) and Swanepoel (1999) have rates of convergence
{n= log.n/}1=3 and n2=5= log.n/δ, for δ > 0, respectively. Morover, both results require smooth-
ness assumptions on F—Hengartner and Stark (1995) required F to be concave with a density
that is Lipschitz of order 1, whereas Swanepoel (1999) required even stronger smoothness condi-
tions on the density. Nguyen and Matias (2014) proved that, when the density of F

α0
s vanishes at

a set of points of measure 0 and satisfies certain regularity assumptions, then any
√

n-consistent
estimator of α0 will not have finite variance in the limit (if such an estimator exists).

We can take rn = √
n=cn arbitrarily close to

√
n by choosing cn that increases to ∞ very

slowly. If we take cn = log{log.n/}, we obtain an estimator that has a rate of convergence√
n= log{log.n/}. In fact, as the next result (which is proved in section 15.6 of the on-line

supplementary material) shows, rn.α̂cn

0 − α0/ converges to a degenerate limit. In Section 8.2,
we analyse the effect of cn on the finite sample performance of α̂cn

0 for estimating α0 through
simulations and advocate a proper choice of the tuning parameter cn.

Theorem 4. When α0 > 0, if rn →∞, cn =o.n1=4/ and cn →∞, as n→∞, then

rn.α̂cn

0 −α0/
P→ c,

where c< 0 is a constant that depends on α0, F and Fb.

4. Lower confidence bound for α0

The asymptotic limit of the estimator α̂cn

0 that was discussed in Section 3 depends on unknown
parameters (e.g. α0 and F ) in a complicated fashion and is of little practical use. Our goal in this
section is to construct a finite sample (honest) lower confidence bound α̂L with the property

P.α0 � α̂L/�1−β, .11/

for a specified confidence level 1−β (0 <β < 1) that is valid for any n and is tuning parameter
free. Such a lower bound would allow us to assert, with a specified level of confidence, that the
proportion of signal is at least α̂L.

It can also be used to test the hypothesis that there is no signal at level β by rejecting when
α̂L > 0. The problem of no signal is known as the homogeneity problem in the statistical lit-
erature. It is easy to show that α0 = 0 if and only if F = Fb. Thus, the hypothesis of no signal
or homogeneity can be addressed by testing whether α0 =0 or not. There has been a consider-
able amount of work on the homogeneity problem, but most of the references make parametric
model assumptions. Lindsay (1995) is an authoritative monograph on the homogeneity problem
but the components are assumed to be from a known exponential family. Walther (2001, 2002)
discussed the homogeneity problem under the assumption that the densities are log-concave.
Donoho and Jin (2004) and Cai and Jin (2010) discussed the problem of detecting sparse hetero-
geneous mixtures under parametric settings using the ‘higher criticism’ statistic; see section 14
of the on-line supplementary material for more details.
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It will be seen that our approach will lead to an exact lower confidence bound when α0 = 0,
i.e. P.α̂L =0/=1−β. The methods of Genovese and Wasserman (2004) and Meinshausen and
Rice (2006) usually yield conservative lower bounds.

Theorem 5. Let Hn be the CDF of
√

ndn.Fn, F/. Let α̂L be defined as in equation (7) with
cn =H−1

n .1−β/. Then inequality (11) holds. Furthermore if α0 =0, then P.α̂L =0/=1−β,
i.e. it is an exact lower bound.

The proof of theorem 5 can be found in Appendix A. Note that Hn is distribution free (i.e. it
does not depend on Fs and Fb) when F is a continuous CDF and can be readily approximated
by Monte Carlo simulations using a sample of uniform distributions. For moderately large n

(e.g. n � 500) the distribution Hn can be very well approximated by that of the Cramér–von
Mises statistic, defined as

√
nd.Fn, F/ :=

√∫
n{Fn.x/−F.x/}2 dF.x/:

Letting Gn be the CDF of
√

nd.Fn, F/, we have the following result.

Theorem 6. supx∈R |Hn.x/−Gn.x/|→0 as n→∞:

Hence in practice, for moderately large n, we can take cn to be the .1−β/-quantile of Gn or
its asymptotic limit, which are readily available (for example, see Anderson and Darling (1952)).
When F is a continuous CDF, the asymptotic 95% quantile of Gn is 0.6792 and is used in our
data analysis. Note that

P.α0 � α̂L/=P{√
nα0 dn.F̂

α0
s,n, F̌α0

s,n/�H−1
n .1−β/}:

The following theorem gives the explicit asymptotic limit of P.α0 � α̂L/ but it is not useful for
practical purposes as it involves the unknown F

α0
s and F .

Theorem 7. Assume thatα0 >0. Then
√

nα0 dn.F̂
α0
s,n, F̌

α0
s,n/→d U, where U is a random variable

whose distribution depends only on α0, F and Fb:

The proof of theorem 7 and the explicit form of U can be found in the on-line supplementary
material. The proof of theorem 6 and a detailed discussion on the performance of the lower
confidence bound for detecting heterogeneity in the moderately sparse signal regime considered
in Donoho and Jin (2004) can be found in section 14 of the on-line supplementary material.

5. Heuristic estimator of α0

In simulations, we observe that the finite sample performance of equation (7) is affected by
the choice of cn (for an extensive simulation study on this see Section 8.2). This motivates us
to propose a method to estimate α0 that is completely automated and has good finite sample
performance. We start with a lemma, which is proved in Appendix A, that describes the shape
of our criterion function and will motivate our procedure.

Lemma 9. γ dn.F̂
γ
s,n, F̌

γ
s,n/ is a non-increasing convex function of γ in .0, 1/.

Writing

F̂
γ
s,n = Fn −F

γ
+ α0

γ
Fα0

s +
(

1− α0

γ

)
Fb,

we see that, for γ �α0, the second term on the right-hand side is a CDF. Thus, for γ �α0, F̂
γ
s,n is
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Fig. 1. Plots of γ dn.F̂
γ

S,n, LF γ
S,n/ ( ) overlaid with its (scaled) second derivative ( ) for α0 D 0.1

and nD5000: (a) setting I; (b) setting II

very close to a CDF as Fn −F =OP.n−1=2/, and hence F̌
γ
s,n should also be close to F̂

γ
s,n. whereas,

for γ <α0, F̂
γ
s,n is not close to a CDF, and thus the distance γ dn.F̂

γ
s,n, F̌

γ
s,n/ is appreciably large.

Therefore, at α0, we have a ‘regime’ change: γ dn.F̂
γ
s,n, F̌

γ
s,n/ should have a slowly decreasing

segment to the right of α0 and a steeply non-increasing segment to the left of α0. Fig. 1 shows
two typical such plots of the function γ dn.F̂

γ
s,n, F̌

γ
s,n/, where Fig. 1(a) corresponds to a mixture of

N.2, 1/ with N.0, 1/ (setting I) and in Fig. 1(b) we have a mixture of beta(1,10) and uniform.0, 1/

distributions (setting II). We shall use these two settings to illustrate our methodology in the
rest of this section and also in Section 8.1.

Using the above heuristics, we can see that the ‘elbow’ of the function should provide a good
estimate of α0; it is the point that has the maximum curvature, i.e. the point where the second
derivative is maximum. We denote this estimator by α̃0. Note that both the estimators α̃0 and
α̂cn

0 are derived from γ dn.F̂
γ
s,n, F̌

γ
s,n/, as a function of γ, albeit they look at two different aspects

of the function.
In Fig. 1 we have used numerical methods to approximate the second derivative of γ dn.F̂

γ
s,n,

F̌
γ
s,n/ (using the method of double differencing). We advocate plotting the functionγ dn.F̂

γ
s,n, F̌

γ
s,n/

as γ varies between 0 and 1. In most cases, plots similar to Fig. 1 would immediately convey to
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the practitioner the most appropriate choice of α̃0. In some cases though, there can be multiple
peaks in the second derivative, in which case some discretion on the part of the practitioner might
be required. It should be noted that the idea of finding the point where the second derivative is
large to detect an ‘elbow’ or ‘knee’ of a function is not uncommon; see, for example, Salvador
and Chan (2004). However, in Section 8.2.4 and section 13 of the on-line supplementary mate-
rial, we show some simulation examples where α̃0 fails to estimate the elbow of γ dn.F̂

γ
s,n, F̌

γ
s,n/

consistently.

6. Estimation of the distribution function and its density

6.1. Estimation of Fs
Let us assume for the rest of this section that model (1) is identifiable, i.e. α=α0, and α0 > 0.
Thus F

α0
s = Fs. Once we have a consistent estimator α̌n (which may or may not be α̂cn

0 as
discussed in the previous sections) of α0, a natural non-parametric estimator of Fs is F̌

α̌n
s,n,

defined as the minimizer of expression (3). In the following theorem (which is proved in the on-
line supplementary material) we show that, indeed, F̌

α̌n
s,n is uniformly consistent for estimating

Fs. We also derive the rate of convergence of F̌
α̌n
s,n.

Theorem 8. Suppose that α̌n→Pα0. Then, as n→∞, supx∈R |F̌ α̌n
s,n.x/−Fs.x/|→P0: Further-

more, if qn.α̌n − α0/ = OP.1/, where qn = o.
√

n/, then supx∈R qn|F̌ α̌n
s,n.x/ − Fs.x/| = OP.1/:

Additionally, for α̂cn

0 as defined in expression (7), we have

sup
x∈R

|rn.F̂
α̂cn

0
s,n −Fs/.x/−Q.x/| P→0,

rn d.F̌
α̂cn

0
s,n , Fs/

P→ c

for a function Q : R→R and a constant c> 0 depending only on α0, F and Fb.

An immediate consequence of theorem 8 is that dn.F̌
α̌n
s,n, F̂

α̌n

s,n/→P0 as n→∞. Fig. 2(a) shows
our estimator F̌

α̌n
s,n along with the true Fs for the same data set as used in Fig. 1(b).

6.2. Estimating the density of Fs
Suppose now that Fs has a density fs. Obtaining non-parametric estimators of fs can be difficult
as it requires smoothing and usually involves the choice of tuning parameter(s) (e.g. smoothing
bandwidths), and especially so in our set-up.

In this subsection we describe a tuning-parameter-free approach to estimating fs, under the
additional assumption that fs is non-increasing. The assumption that fs is non-increasing, i.e.
Fs is concave on its support, is natural in many situations (see Section 7 for an application in the
multiple-testing problem) and has been investigated by several researchers, including Grenander
(1956), Langaas et al. (2005) and Genovese and Wasserman (2004). Without loss of generality,
we assume that fs is non-increasing on [0, ∞/.

For a bounded function g : [0, ∞/→R, let us represent the least concave majorant (LCM) of
g by LCM[g]. Thus, LCM[g] is the smallest concave function that lies above g. Define F

†
s,n :=

LCM[F̌ α̌n
s,n]. Note that F

†
s,n is a valid CDF. We can now estimate fs by f

†
s,n, where f

†
s,n is the

piecewise constant function that is obtained by taking the left derivative of F
†
s,n. In the following

result, which is proved in the on-line supplementary material, we show that both F
†
s,n and f

†
s,n

are consistent estimators of their population versions.

Theorem 9. Assume that Fs.0/ = 0 and that Fs is concave on [0, ∞/. If α̌n→Pα0, then, as
n→∞,
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Fig. 2. (a) LF Qα0
S,n ( ), F †

S,n ( ) and FS ( ) for setting I and (b) f†
S,n ( ) and fS ( ) for

setting II

sup
x∈R

|F†
s,n.x/−Fs.x/| P→0: .12/

Further, if, for any x> 0, fs.x/ is continuous at x, then f
†
s,n.x/→Pfs.x/:

Computing F
†
s,n and f

†
s,n is straightforward: an application of the pooled adjacent violators

algorithm gives both the estimators; see, for example, chapter 1 of Robertson et al. (1988). Fig.
2(a) shows the LCM F

†
s,n whereas Fig. 2(b) shows its derivative f

†
s,n along with the true density

fs for the same data set as used in Fig. 1(b).

7. Multiple-testing problem

The problem of estimating the proportion of false null hypotheses α0 is of interest in situations
where a large number of hypothesis tests are performed. Recently, various such situations have
arisen in applications. One major motivation is in estimating the proportion of genes that are
differentially expressed in deoxyribonucleic acid microarray experiments. However, estimating
the proportion of true null hypotheses is also of interest, for example, in functional magnetic
resonance imaging (see Turkheimer et al. (2001)) and source detection in astrophysics (see Miller
et al. (2001)).
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Suppose that we wish to test n null hypotheses H01, H02, : : : , H0n on the basis of a data set
X. Let Hi denote the (unobservable) binary variable that is 0 if H0i is true, and 1 otherwise,
i = 1, : : : , n. We want a decision rule D that will produce a decision of ‘null’ or ‘non-null’ for
each of the n cases. In their seminal work Benjamini and Hochberg (1995) argued that an
important quantity to control is the false discovery rate FDR and proposed a procedure with
the property FDR �β.1−α0/, where β is the user-defined level of the FDR-procedure. When
α0 is significantly bigger than 0 an estimate of α0 can be used to yield a procedure with FDR
approximately equal to β and thus will result in an increased power. This is essentially the
idea of the adapted control of FDR (see Benjamini and Hochberg (2000)). See Storey (2002),
Black (2004), Langaas et al. (2005), Benjamini et al. (2006), and Donoho and Jin (2004) for a
discussion on the importance of efficient estimation of α0 and some proposed estimators.

Our method can be directly used to yield an estimator of α0 that does not require the spec-
ification of any tuning parameter, as discussed in Section 5. We can also obtain a completely
non-parametric estimator of Fs, the distribution of the p-values arising from the alternative
hypotheses. Suppose that Fb has a density fb and Fs has a density fs. To keep the following
discussion more general, we allow fb to be any known density, although in most multiple-testing
applications we shall take fb to be uniform.0, 1/. The local false discovery rate (LFDR) is defined
as the function l : .0, 1/→ [0, ∞/, where

l.x/=P.Hi =0|Xi =x/= .1−α0/fb.x/

f.x/
,

and f.x/ =α0 fs.x/ + .1 −α0/fb.x/ is the density of the observed p-values. The estimation of
the LFDR l is important because it gives the probability that a particular null hypothesis is true
given the observed p-value for the test. The LFDR method can help us to obtain easily inter-
pretable thresholding methods for reporting the ‘interesting’ cases (e.g. l.x/�0:20). Obtaining
good estimates of l can be tricky as it involves the estimation of an unknown density, usually
requiring smoothing techniques; see Section 5 of Efron (2010) for a discussion on estimation
and interpretation of l. From the discussion in Section 6.1, under the additional assumption
that fs is non-increasing, we have a natural tuning-parameter-free estimator l̂ of the LFDR:

l̂.x/= .1− α̌n/fb.x/

α̌n f
†
s,n.x/+ .1− α̌n/fb.x/

, for x∈ .0, 1/:

The assumption that fs is non-increasing, i.e. Fs is concave, is quite natural—when the alter-
native hypothesis is true the p-value is generally small—and has been investigated by several
researchers, including Genovese and Wasserman (2004) and Langaas et al. (2005).

8. Simulation

To investigate the finite sample performance of the estimators that are developed in this paper,
we carry out several simulation experiments. We also compare the performance of these estim-
ators with existing methods. The R language (R Development Core Team, 2008) codes used
to implement our procedures are available from http://stat.columbia.edu/∼rohit/
research.html.

8.1. Lower bounds for α0
Although there has been some work on estimation of α0 in the multiple-testing setting, Meins-
hausen and Rice (2006) and Genovese and Wasserman (2004) are the only references that we
found that discuss methodology for constructing lower confidence bounds for α0. These proce-
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Table 1. Coverage probabilities of nominal 95% lower confidence bounds for the three methods when
nD1000 and nD5000

α Results for n=1000 Results for n=5000

Setting I Setting II Setting I Setting II

α̂L α̂GW
L α̂MR

L α̂L α̂GW
L α̂MR

L α̂L α̂GW
L α̂MR

L α̂L α̂GW
L α̂MR

L

0 0.95 0.98 0.93 0.95 0.98 0.93 0.95 0.97 0.93 0.95 0.97 0.93
0.01 0.97 0.98 0.99 0.97 0.97 0.99 0.98 0.98 0.99 0.98 0.98 0.99
0.03 0.98 0.98 0.99 0.98 0.98 0.99 0.98 0.98 0.99 0.98 0.98 0.99
0.05 0.98 0.98 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.98 0.98 0.99
0.10 0.99 0.99 1.00 0.99 0.98 0.99 0.99 0.99 1.00 0.99 0.98 0.99

dures are connected and the methods in Meinshausen and Rice (2006) are extensions of those
proposed in Genovese and Wasserman (2004). The lower bounds that were proposed in both
the references approximately satisfy inequality (11) and have the form supt∈.0,1/{Fn.t/ − t −
ηn,β δ.t/}=.1 − t/, where ηn,β is a bounding sequence for the bounding function δ.t/ at level β;
see Meinshausen and Rice (2006). Genovese and Wasserman (2004) used a constant bound-
ing function, δ.t/ = 1, with ηn, β = √{log.2=β/=.2n/}, whereas Meinshausen and Rice (2006)
suggested a class of bounding functions but observed that the standard deviation proportional
bounding function δ.t/ = √{t.1− t/} has optimal properties among a large class of possible
bounding functions. We use this bounding function and a bounding sequence that was sug-
gested by Meinshausen and Rice (2006). We denote the lower bound proposed in Meinshausen
and Rice (2006) by α̂MR

L , the bound in Genovese and Wasserman (2004) by α̂GW
L and the lower

bound discussed in Section 4 by α̂L. To be able to use the methods of Meinshausen and Rice
(2006) and Genovese and Wasserman (2004) in setting I, which was introduced in Section 5, we
transform the data such that Fb is uniform.0, 1/; see Section 3.1 for the details.

We take α∈{0, 0:01, 0:03, 0:05, 0:10} and compare the performance of the three lower bounds
in the two different simulation settings that were discussed in Section 5. For each setting we take
the sample size n to be 1000 and 5000. We present the estimated coverage probabilities, obtained
by averaging over 5000 independent replications, of the lower bounds for both settings in Table 1.
We can immediately see from Table 1 that the bounds are usually quite conservative. However, it
is worth pointing out that, when α0 =0, our method has exact coverage, as discussed in Section 4.
Also, the fact that our procedure is simple, easy to implement and completely automated makes
it very attractive.

8.2. Estimation of α0
In this subsection, we illustrate and compare the performance of various estimators of α0
under two sampling scenarios. In scenario A, we proceed as in Langaas et al. (2005). Let
Xj = .X1j, X2j, : : : , Xnj/, for j = 1, : : : , J , and assume that each Xj ∼ N.μn×1, Σn×n/ and that
X1, X2, : : : , XJ are independent. We test H0i :μi =0 versus H1i :μi �=0 for each i=1, 2, : : : , n. We
set μi to 0 for the true null hypotheses, whereas for the false null hypotheses we draw μi from a
symmetric bi-triangular density with parameters a= log2.1:2/= 0:263 and b = log2.4/= 2; see
page 568 of Langaas et al. (2005) for the details. Let xij denote a realization of Xij and α be
the proportion of false null hypotheses. Let x̄i = ΣJ

j=1 xij=J and s2
i = ΣJ

j=1.xij − x̄i/
2=.J − 1/.
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To test H0i versus H1i, we calculate a two-sided p-value based on a one-sample t-test, with
pi =2P{TJ−1 � |x̄i=

√
.s2

i =J/|}, where TJ−1 is a t-distributed random variable with J −1 degrees
of freedom.

In scenario B, we generate n+L independent random variables w1, w2, : : : , wn+L from N.0, 1/

and set

zi = 1√
.L+1/

i+L∑
j=i

wj

for i= 1, 2, : : : , n. The dependence structure of the zis is determined by L. For example, L= 0
corresponds to the case where the zis are standard normal. Let Xi = zi +mi, for i= 1, 2, : : : , n,
where mi = 0 under the null, and, under the alternative, |mi| is randomly generated from
uniform.mÅ, mÅ + 1/ and sgn.mi/, the sign of mi, is randomly generated from {−1, 1} with
equal probabilities. Here mÅ is a suitable constant that describes the simulation setting. Let
1−α be the proportion of true null hypotheses. Scenario B is inspired by the numerical studies
in Cai and Jin (2010) and Jin (2008).

We use α̂S,B
0 to denote the estimator that was proposed by Storey (2002) when bootstrapping is

used to choose the required tuning parameter, and denote by α̂S,λ
0 the estimator when the value

of the tuning parameter is fixed at λ: Langaas et al. (2005) proposed an estimator that is tuning
parameter free but crucially uses the known shape constraint of a convex and non-increasing
fs; we denote it by α̂L

0 . We evaluate α̂L
0 by using the convest function in the R library limma.

We also use the estimator that was proposed in Meinshausen and Rice (2006) for two bounding
functions: δ.t/ =√{t.1− t/} and δ.t/ = 1. For its implementation, we must choose a sequence
{βn} going to 0 as n→∞. Meinshausen and Rice (2006) did not specify any particular choice of
{βn} but required the sequence to satisfy some conditions. We choose βn =0:05=

√
n and denote

the estimators by α̂MR
0 when δ.t/ =√{t.1− t/} and by α̂GW

0 when δ.t/ = 1 (see Genovese and
Wasserman (2004)). We also compare our results with α̂E

0 , the estimator that was proposed in
Efron (2007) using the central matching method, computed using the locfdr function in the
R library locfdr. Jin (2008) and Cai and Jin (2010) proposed estimators when the model is
a mixture of Gaussian distributions; we denote the estimator that was proposed in section 2.2
of Jin (2008) by α̂J

0 and in section 3.1 of Cai and Jin (2010) by α̂CJ
0 : Some of the competing

methods require Fb to be of a specific form (e.g. standard normal) in which case we transform
the observed data suitably.

The estimator α̂cn

0 depends on the choice of cn and in what follows we investigate a proper
choice of cn. We take α0 =0:1 and evaluate the performance of α̂

τ log{log.n/}
0 for various values

of τ , as n increases, for scenarios A and B. The choice cn = τ log{log.n/}, for various values
of τ , is suggested after extensive simulations. We also include α̃0, α̂GW

0 , α̂MR
0 and α̂J

0 in the
comparison. For scenario A, we fix the sample size n at 5000 and Σ= In×n. For scenario B, we
fix n=5×104, L=0 and mÅ =1: In Fig. 3, we illustrate the effect of cn on estimation of α0 as
n varies from 3000 to 105: Recall that α̃0 denotes the estimator that was proposed in Section 5.
For both scenarios, the sample means of the estimators of α0 that is proposed in this paper
converge to the true α0, as the sample size grows. The methods that are developed in this paper
perform favourably in comparison with α̂GW

0 , α̂MR
0 and α̂J

0: Since the choice of cn dictates the
finite sample performance of α̂cn

0 , we propose cross-validation to find an appropriate value of
the tuning parameter.

8.2.1. Cross-validation
In this subsection, we use c instead of cn to simplify the notation. In what follows we briefly
describe our cross-validation procedure. For a K-fold cross-validation, we randomly partition
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(a)

(b)

Fig. 3. Means of various estimators of α0 computed over 5000 independent replications as the sample size
increases ( , 0.01kn; , 0.05kn; , 0:1kn; , 0.2kn; , 0.3kn): (a) scenario A with
ΣD In�n ( , Qα0; , αGW

0 ; , α̂MR
0 ; , α̂J

0); (b) scenario B with L D 0 and m* D 1 ( ,
Qα0; , αGW

0 ; , αMR
0 )

the data into K sets, say D1, : : : , DK: Let Fk
n be the empirical CDF of the data in Dk: Let α̂c

0,−k

be the estimator that is defined in expression (7) using all data except those in Dk and tuning
parameter c. Further, let F̌

α̂c
0,−k ,−k

s,n be the estimator of Fs as defined in lemma 1 using α̂c
0,−k and

all data except those in Dk: Define the cross-validated estimator of c as

ccv :=arg min
c∈R

K∑
k=1

∫
.Fk

n − F̂
k
/2 dFk

n, .13/



16 R. Kumar Patra and B. Sen

(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a) Density functions for various choices of FS ( , distance 1; , distance 2; , dis-
tance 3; , distance 4), (b) γ dn.F̂ γ

S,n, LF γ
S,n/ ( , , , ), the scaled second derivative

( , , , ), α̂CV
0 ( , ) and α̂0:1kn

0 ( , , ) for five independent samples of size 5000 corres-
ponding to distance 1 ( , α0), and means of various competing estimators of α0 computed over 500 inde-
pendent samples ( , 0.1kn) for (c) distance 1 ( , Qα0; , α̂CV

0 ; , α̂MR
0 ; , α̂S,0:2

0 /,
(d) distance 2 ( , Qα0; , α̂CV

0 ; , α̂GW
0 ; , α̂S,B

0 /, (e) distance 3 ( , Qα0; ,
α̂CV

0 ; , α̂GW
0 ; , α̂S,B

0 / and (f) distance 4 ( , Qα0; , α̂CV
0 ; , α̂J

0) as the sample size
increases from 3000 to 2 �105

where F̂
k

:= α̂c
0,−kF̌

α̂c
0,−k ,−k

s + .1− α̂c
0,−k/Fb: In all simulations in this paper, we use K =10 and

denote this estimator by α̂CV
0 ; see section 7.10 of Hastie et al. (2009) for a more detailed study

of cross-validation and a justification for K =10. Fig. 4 illustrates the superior performance of
α̂CV

0 across different simulation settings; also see Sections 8.2.2 and 8.2.4, and section 13 (in the
the on-line supplementary material).

8.2.2. Performance under independence
In this subsection, we take α ∈ {0:01, 0:03, 0:05, 0:10} and compare the performance of the
various estimators under the independence setting of scenarios A and B. In Tables 2 and 3, we
give the mean and root-mean-squared error RMSE of the estimators over 5000 independent
replications. For scenario A, we fix the sample size n at 5000 and Σ= In×n. For scenario B, we
fix n=5×104, L=0 and mÅ =1: By an application of lemma 4, it is easy to see that, in scenario
A, the model is identifiable (i.e. α0 =α), whereas, in scenario B, α0 =α×0:67. For scenario A,
the sample means of α̂CV

0 , α̃0, α̂J
0, α̂L

0 and α̂0:1kn

0 for kn = log{log.n/} are comparable. However,
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Table 2. Means �10 and RMSEs �100 (in parentheses) of estimators discussed in Section 8.2 for scenario
A with ΣD In�n, J D10, nD5000 and kn D log{log.n/}

10α0 α̂0 :1kn
0 α̂CV

0 α̃0 α̂GW
0 α̂MR

0 α̂
S,0 :5
0 α̂J

0 α̂CJ
0 α̂L

0 α̂E
0

0.10 0.13 0.15 0.13 0.00 0.01 0.09 0.14 0.05 0.16 0.36
(1.00) (1.79) (0.83) (1.00) (0.88) (1.41) (1.50) (5.32) (1.20) (3.70)

0.30 0.30 0.35 0.27 0.02 0.12 0.29 0.29 0.15 0.35 0.36
(1.02) (1.87) (1.01) (2.80) (1.84) (1.41) (1.83) (5.46) (1.26) (3.96)

0.50 0.48 0.51 0.46 0.18 0.26 0.47 0.49 0.26 0.55 0.35
(1.09) (1.9) (1.12) (3.29) (2.46) (1.49) (1.91) (5.73) (1.34) (3.80)

1.00 0.93 0.97 0.93 0.62 0.65 0.95 0.96 0.51 1.02 0.33
(1.35) (1.86) (1.32) (3.88) (3.57) (1.51) (1.94) (7.16) (1.36) (3.73)

Table 3. Means �10 and RMSEs�100 (in parentheses) of estimators discussed in Section 8.2 for scenario
B with LD0, m* D1, nD5�104 and kn D log{log.n/}

10α0 α̂0 :1kn
0 α̂CV

0 α̃0 α̂GW
0 α̂MR

0 α̂
S,B
0 α̂J

0 α̂CJ
0 α̂L

0 α̂E
0

0.07 0.03 0.04 0.08 0.00 0.00 0.04 0.11 0.19 0.03 0.06
(0.44) (0.67) (0.28) (0.66) (0.66) (0.65) (0.96) (2.96) (0.38) (0.77)

0.20 0.14 0.18 0.16 0.00 0.01 0.08 0.28 0.55 0.07 0.05
(0.73) (0.79) (0.62) (1.98) (1.89) (2.25) (1.33) (4.41) (1.26) (1.28)

0.33 0.25 0.31 0.28 0.02 0.04 0.12 0.48 0.92 0.12 0.05
(0.89) (0.85) (0.95) (3.15) (2.91) (3.83) (1.77) (6.48) (2.14) (1.90)

0.66 0.55 0.62 0.58 0.12 0.14 0.23 0.95 1.83 0.23 0.05
(1.21) (1.00) (1.48) (5.38) (5.25) (7.73) (3.04) (11.98) (4.34) (3.84)

the RMSEs of α̃0 and α̂0:1kn

0 are lower than those of α̂CV
0 , α̂J

0 and α̂L
0 : For scenario B, the sample

means of α̃0, α̂CV
0 and α̂0:1kn

0 are comparable. In scenario B, the performances of α̂J
0 and α̂CJ

0 are
not comparable with the estimators that are proposed in this paper, as α̂J

0 and α̂CJ
0 estimate α,

whereas α̃0, α̂CV
0 and α̂cn

0 estimate α0: Note that α̂L
0 fails to estimate α0 because the underlying

assumption that is inherent in their estimation procedure, that fs be non-increasing, does not
hold. In scenario A, α̂S,0:5

0 has the best performance among the different values of λ, whereas,
in scenario B, α̂S,λ

0 has poor performance for all values of λ∈ [0, 1]: Furthermore, α̂GW
0 , α̂MR

0 ,
α̂CJ

0 , α̂S,B
0 and α̂E

0 perform poorly in both scenarios for all values of α0:

8.2.3. Performance under dependence
The simulation settings of this subsection are designed to investigate the effect of dependence on
the performance of the estimators. For scenario A, we use the setting of Langaas et al. (2005).
We take Σ to be a block diagonal matrix with block size 100. Within blocks, the diagonal el-
ements (i.e. variances) are set to 1 and the off-diagonal elements (within-block correlations)
are set to ρ = 0:5. Outside the blocks, all entries are set to 0. Tables 4 and 5 show that, in
both scenarios, none of the methods perform well for small values of α0: However, in sce-
nario A, the performances of α̂0:1kn

0 , α̃0 and αJ
0 are comparable, for larger values of α0: In

scenario B, α̂0:1kn

0 performs well for α0 =0:033 and α0 =0:067. Observe that, as in the indepen-
dence setting, α̂GW

0 , α̂MR
0 , α̂S,B

0 , α̂CJ
0 and α̂E

0 perform poorly in both scenarios for all values of
α0:



18 R. Kumar Patra and B. Sen

Table 4. Means�10 and RMSEs�100 (in parentheses) of estimators discussed in Section 8.2 for scenario
A with Σ as described in Section 8.2.3, J D10, nD5000 and kn D log{log.n/}

10α0 α̂0 :1kn
0 α̂CV

0 α̃0 α̂GW
0 α̂MR

0 α̂
S,0 :5
0 α̂J

0 α̂CJ
0 α̂L

0 α̂E
0

0.10 0.46 0.42 0.33 0.07 0.06 0.28 0.22 0.07 0.32 0.37
(5.15) (4.23) (3.84) (1.72) (1.27) (4.11) (3.03) (10.61) (4.37) (3.91)

0.30 0.52 0.53 0.41 0.14 0.17 0.65 0.34 0.15 0.49 0.39
(3.80) (3.64) (3.59) (2.72) (1.90) (6.58) (3.25) (10.35) (4.30) (4.31)

0.50 0.66 0.76 0.54 0.26 0.31 0.54 0.49 0.25 0.66 0.37
(3.52) (5.43) (3.85) (3.56) (2.50) (2.61) (3.60) (10.45) (4.31) (4.03)

1.00 1.06 1.13 0.97 0.68 0.69 1.15 0.97 0.53 1.11 0.36
(3.09) (3.92) (4.00) (4.15) (3.54) (6.01) (3.61) (10.55) (4.13) (3.99)

Table 5. Means�10 and RMSEs�100 (in parentheses) of estimators discussed in Section 8.2 for scenario
B with LD30, m* D1, nD5�104 and kn D log{log.n/}

10α0 α̂0 :1kn
0 α̂CV

0 α̃0 α̂GW
0 α̂MR

0 α̂
S,B
0 α̂J

0 α̂CJ
0 α̂L

0 α̂E
0

0.07 0.29 0.38 0.17 0.04 0.05 0.26 0.20 0.21 0.13 0.22
(2.92) (3.70) (1.62) (1.02) (1.36) (3.71) (2.80) (9.87) (1.75) (2.22)

0.20 0.30 0.42 0.18 0.04 0.04 0.16 0.33 0.55 0.13 0.19
(1.84) (2.88) (1.25) (1.75) (1.71) (2.24) (3.25) (10.35) (1.42) (2.27)

0.33 0.38 0.52 0.20 0.06 0.06 0.17 0.50 0.93 0.16 0.18
(1.54) (2.74) (1.89) (2.83) (2.73) (3.51) (3.71) (11.52) (2.03) (2.59)

0.67 0.63 0.77 0.31 0.14 0.15 0.24 0.95 1.82 0.25 0.16
(1.53) (2.25) (4.32) (5.26) (5.13) (7.60) (4.54) (15.13) (4.23) (4.08)

8.2.4. Comparing the performance of α̂cn

0 , α̂CV
0 and α̃0

Although the heuristic estimator α̃0 performs quite well in most of the simulation settings that
were considered, there are scenarios where α̃0 can fail to estimate α0 consistently. To illustrate
this we consider four different CDFs Fs and fix Fb to be the uniform distribution on .0, 1/

(see Fig. 4(a)) and compare the performance of α̂CV
0 , α̃0 and α̂0:1kn

0 with the best performing
competing estimators (in each setting).

We see that α̃0 may fail to estimate the elbow of γ dn.F̂
γ
s,n, F̌

γ
s,n/, as a function of γ, when Fs has

a multimodal density (see Figs 4(b) and 4(c)). Observe that α̂CV
0 and α̂0:1kn

0 perform favourably
compared with all competing estimators and, in the two scenarios where α̃0 fails to estimate α0
consistently, all our competing estimators also fail.

The first two toy examples have been carefully constructed to demonstrate situations where
the point of maximum curvature (α̃0) is different from the elbow of the function; see Fig. 4(b)
(also see section 13 of the on-line supplementary material for further such examples).

8.2.5. Our recommendation
In this paper we study two estimators for α0. For α̂cn

0 , a proper choice of cn is important for
good finite sample performance. We suggest using cross-validation to find the optimal tuning
parameter cn. However, cross-validation can be computationally expensive. An attractive alter-
native in this situation is to use α̃0, which is easy to implement and has very good finite sample
performance in most scenarios, especially with large sample sizes. We feel that a visual analysis
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Table 6. Estimates of α0 for the two data sets

Data set α̂0:1kn
0 α̂CV

0 α̃0 α̂GW
0 α̂MR

0 α̂
S,B
0 α̂J

0 α̂CJ
0 α̂L

0 α̂E
0

Prostate 0.08 0.10 0.09 0.04 0.01 0.19 0.10 0.02 0.11 0.02
Carina 0.36 0.35 0.36 0.31 0.30 0.45 0.61 1.00 0.38 —†

†Not applicable.

of the plot of γ dn.F̂
γ
s,n, F̌

γ
s,n/ can be useful in checking the validity of α̃0 as an estimator of the

elbow, and thus for α0.

9. Real data analysis

9.1. Prostate cancer data
Genetic expression levels for n = 6033 genes were obtained for m = 102 men, m1 = 50 normal
control subjects and m2 = 52 prostate cancer patients. Without going into the biology that is
involved, the principal goal of the study was to discover a small number of ‘interesting’ genes,
i.e. genes whose expression levels differ between the cancer and control patients. Such genes,
once identified, might be further investigated for a causal link to prostate cancer development.
The prostate data are a 6033 × 102 matrix X having entries xij, the expression level for gene
i on patient j, i= 1, 2, : : : , n, and j = 1, 2, : : : , m, with j = 1, 2, : : : , 50, for the normal controls,
and j =51, 52, : : : , 102, for the cancer patients. Let x̄i.1/ and x̄i.2/ be the averages of xij for the
normal controls and for the cancer patients respectively, for gene i. The two-sample t-statistic
for testing significance of gene i is ti ={x̄i.1/− x̄i.2/}=si, where si is an estimate of the standard
error of x̄i.1/− x̄i.2/, i.e.

s2
i =

(
1
50

+ 1
52

) 50∑
j=1

{xij − x̄i.1/}2 +
102∑

j=51
{xij − x̄i.2/}2

100
:

We work with the p-values obtained from the 6033 two-sided t-tests instead of the ‘t-values’
as then the distribution under the alternative will have a non-increasing density which we can
estimate by using the method that was developed in Section 6.1. In our analysis we ignore the
dependence of the p-values, which is only a moderately risky assumption for the prostate data;
see chapters 2 and 8 of Efron (2010) for further analysis and justification. Fig. 5 show the plots of
various quantities of interest, found by using the methodology that was developed in Section 6.1
and Section 7, for the prostate data example. The 95% lower confidence bound α̂L for these data
is found to be 0.05. In Table 6, we display estimates of α0 based on the methods that were
considered in this paper for the prostate data and the Carina data (which are described below).

9.2. Carina data—an application in astronomy
In this subsection we analyse the distribution of radial velocities RV of stars in Carina, a dwarf
spheroidal galaxy. Such galaxies are low luminosity galaxies that are companions of the Milky
Way. The data have been obtained by Magellan and Multiple Mirror telescopes (see Walker
et al. (2007)) and consist of radial (line-of-sight) velocity measurements of n=1266 stars from
Carina, contaminated with Milky Way stars in the field of view. We would like to understand
the distribution of RVs of stars in Carina. For the contaminating stars from the Milky Way
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Fig. 6. Plots for the RV-data in the Carina dwarf spheroidal galaxy: (a) γ dn.F̂
γ

S,n, LF γ
S,n/ ( ) overlaid with

its (scaled) second derivative ( ); (b) density of the RV-distribution of the contaminating stars overlaid
with the (scaled) kernel density estimator of the observed sample; (c) LF Qα0

S,n ( ) overlaid with its closest
Gaussian distribution ( )

in the field of view we assume a non-Gaussian velocity distribution Fb that is known from the
Besancon Milky Way model (Robin et al., 2003), calculated along the line of sight to Carina.

The 95% lower confidence bound for α0 is found to be 0.323. Fig. 6(c) shows the estimate of
Fs and the closest (in terms of minimizing the L2.F̌

α̃0
s,n/ distance) fitting Gaussian distribution.

Astronomers usually assume the distribution of the RVs for these dwarf spheroidal galaxies to
be Gaussian. Indeed we see that the estimated Fs is close to a normal distribution (with mean
222.9 and standard deviation 7.51), although a formal test of this hypothesis is beyond the scope
of the present paper. The estimate due to Cai and Jin (2010), α̂CJ

0 , is greater than 1, whereas
Efron’s method (see Efron (2007)), implemented by using the locfdr package in R, fails to
estimate α0:

10. Concluding remarks

In this paper we develop procedures for estimating the mixing proportion and the unknown
distribution in a two-component mixture model by using ideas from shape-restricted function
estimation. We discuss the identifiability of the model and introduce an identifiable parameter
α0, under minimal assumptions on the model. We propose an honest finite sample lower con-
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fidence bound of α0 that is distribution free. Two point estimators of α0, α̂cn

0 and α̃0, are studied.
We prove that α̂cn

0 is a consistent estimator of α0 and show that the rate of convergence of α̂cn

0
can be arbitrarily close to

√
n, for proper choices of cn. These proposed estimators crucially rely

on γ dn.F̂
γ
s,n, F̌

γ
s,n/, as a function of γ, whose plot provides useful insights about the nature of

the problem and performance of the estimators.
We observe that the estimators of α0 that are proposed in this paper have superior finite

sample performance than most competing methods. In contrast with most previous work on
this topic the results that are discussed in this paper hold true even when model (1) is not
identifiable. Under the assumption that model (1) is identifiable, we can find an estimator of
Fs which is uniformly consistent. Furthermore, if Fs is known to have a non-increasing density
fs we can find a consistent estimator of fs. All these estimators are tuning parameter free and
easily implementable.

We conclude this section by outlining some possible future research directions. Construction
of two-sided confidence intervals for α0 remains a difficult problem as the asymptotic distribu-
tion of α̂cn

0 depends on the unknown F . We are currently developing estimators of α0 when we
do not exactly know Fb but only have an estimator of Fb (for example, we observe a second inde-
pendent and identically distributed sample from Fb). Investigating consistent alternative ways
of detecting the elbow of the function γ dn.F̂

γ
s,n, F̌

γ
s,n/, as an estimator of α̃0, is an interesting

future research direction. As we have observed in the astronomy application, formal goodness-
of-fit tests for Fs are important—they can guide the practitioner to use appropriate parametric
models for further analysis—but are at present unknown. The p-values in the prostate data
example, which was considered in Section 9.1, can have slight dependence. Therefore, investi-
gating the performance and properties of the methods that were introduced in this paper under
appropriate dependence assumptions on X1, : : : , Xn is another important direction for future
research.
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Appendix A

A.1. Proof of lemma 2
From the definition of α0, we have

α0 = inf{0�γ �α :{F − .1−γ/Fb}=γ is a valid CDF}
= inf{0�γ �α :{αFs + .1−α/Fb − .1−γ/Fb}=γ is a valid CDF}
= inf{0�γ �α :{αFs − .α−γ/Fb}=γ is a valid CDF}
=α− sup{0� ε�α :αFs − εFb is a sub-CDF}
=α− sup{0� ε�1 :αFs − εFb is a sub-CDF},

where the final equality follows from the fact that, if ε>α, then αFs − εFb will not be a sub-CDF.
To show that α0 =0 if and only if F =Fb let us define δ =α− ε. Note that α0 =0, if and only if

sup{0� ε�1 :αFs − εFb is a sub-CDF}=α

⇔ inf{0� δ �1 :α.Fs −Fb/+ δFb is a sub-CDF}=0:

However, it is easy to see that the last equality is true if and only if Fs −Fb ≡0:
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A.2. Proof of lemma 6
Letting F γ

s ={F − .1−γ/Fb}=γ, observe that

γ dn.F̂
γ

s,n, F γ
s /=dn.F , Fn/:

Also note that F γ
s is a valid CDF for γ �α0. As F̌ γ

s,n is defined as the function that minimizes the L2.Fn/
distance of F̂

γ

s,n over all CDFs,

γ dn.F̌ γ
s,n, F̂

γ

s,n/�γ dn.F̂
γ

s,n, F γ
s /=dn.F , Fn/:

To prove the second part of lemma 6 note that for γ �α0 the result follows from above and the fact that
dn.F , Fn/ → 0 almost surely as n→∞.

For γ < α0, F γ
s is not a valid CDF, by the definition of α0. Note that as n → ∞, F̂

γ

s,n→F γ
s almost

surely, pointwise. So, for sufficiently large n, F̂
γ

s,n is not a valid CDF, whereas F̌ γ
s,n is always a CDF. Thus,

dn.F̂
γ

s,n, F̌ γ
s,n/ converges to something positive.

A.3. Proof of lemma 7
Assume that γ1 �γ2 and γ1, γ2 ∈An. If γ3 =ηγ1 + .1−η/γ2, for 0�η�1, it is easy to observe from expression
(2) that

ηγ1F̂
γ1
s,n + .1−η/γ2F̂

γ2
s,n =γ3F̂

γ3
s,n:

Note that {ηγ1F̌
γ1
s,n + .1−η/γ2F̌

γ2
s,n}=γ3 is a valid CDF and thus, from the definition of F̌

γ3
s,n, we have

dn.F̂
γ3
s,n, F̌ γ3

s,n/�dn[F̂
γ3
s,n, {ηγ1F̌

γ1
s,n + .1−η/γ2F̌

γ2
s,n}=γ3]

=dn

(
ηγ1F̂

γ1
s,n + .1−η/γ2F̂

γ2
s,n

γ3
,
ηγ1F̌

γ1
s,n + .1−η/γ2F̌

γ2
s,n

γ3

)

� ηγ1

γ3
dn.F̂

γ1
s,n, F̌ γ1

s,n/+ .1−η/γ2

γ3
dn.F̂

γ2
s,n, F̌ γ2

s,n/ .14/

where the last step follows from the triangle inequality. But, as γ1, γ2 ∈An, inequality (14) yields

dn.F̂
γ3
s,n, F̌ γ3

s,n/� ηγ1

γ3

cn√
nγ1

+ .1−η/γ2

γ3

cn√
nγ2

= cn√
nγ3

:

Thus γ3 ∈An.

A.4. Proof of lemma 8
As α0 =0,

P.α̂cn
0 =0/=1−P.α̂cn

0 > 0/=1−P{√
ndn.Fn, F/>cn}→1, .15/

since
√

ndn.Fn, F/=OP .1/ by theorem 6.

A.5. Proof of theorem 5
Letting cn =H−1

n .1−β/, we have

P.α0 � α̂L/=P{√
nα0 dn.F̂

α0
s,n, F̌α0

s,n/� cn}
�P{√

nα0 dn.F̂
α0
s,n, Fα0

s /� cn}=Hn.cn/=1−β,

where we have used the fact that α0 dn.F̂
α0
s,n, F

α0
s / = dn.Fn, F/. Note that, when α0 = 0, F = Fb, and using

expression (9) we obtain

P.α0 � α̂L/=P{√
ndn.Fn, Fb/� cn}=P{√

ndn.Fn, F/� cn}=1−β:
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A.6. Proof of lemma 9
Let 0 <γ1 <γ2 < 1. Then,

γ2 dn.F̂
γ2
s,n, F̌ γ2

s,n/�γ2 dn{F̂
γ2
s,n, .γ1=γ2/F̌

γ1
s,n + .1−γ1=γ2/Fb}

=dn{γ1F̂
γ1
s,n + .γ2 −γ1/Fb, γ1F̌

γ1
s,n + .γ2 −γ1/Fb}

�γ1 dn.F̂
γ1
s,n, F̌ γ1

s,n/,

which shows that γ dn.F̂
γ

s,n, F̌ γ
s,n/ is a non-increasing function. To show that γ dn.F̂

γ

s,n, F̌ γ
s,n/ is convex, let

0 <γ1 <γ2 < 1 and γ3 =ηγ1 + .1−η/γ2, for 0�η �1. Then, by inequality (14) we have the desired result.

A.7. Proof of theorem 9
Let εn := supx∈R |F̌ α̌n

s,n.x/−Fs.x/|. Then the function Fs + εn is concave on [0, ∞/ and majorizes F̌ α̌n
s,n . Hence,

for all x∈ [0, ∞/, F̌ α̌n
s,n.x/�F †

s,n.x/�Fs.x/+ εn, as F †
s,n is the LCM of F̌ α̌n

s,n . Thus,

−εn � F̌ α̌n
s,n.x/−Fs.x/�F †

s,n.x/−Fs.x/� εn,

and, therefore,

sup
x∈R

|F †
s,n.x/−Fs.x/|� εn:

By theorem 7, as εn→P0, we must also have result (12).
The second part of the result follows immediately from the lemma on page 330 of Robertson et al. (1988)

and is similar to the result in theorem 7.2.2 there.
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